
xRSA: Construct Larger Bits RSA on Low-Cost
Devices

Fan Dang1, Lingkun Li2, Jiajie Chen1
1 Tsinghua University, Beijing, China

2 Michigan State University, East Lansing, USA
dangfan@tsinghua.edu.cn, lilingk1@msu.edu, cjj21@mails.tsinghua.edu.cn

Abstract—As the most widely applied public-key cryptographic
algorithm, RSA is now integrated into many low-cost devices such
as IoT devices. Due to the limited resource, most low-cost devices
only ship a 2048-bit multiplier, making the longest supported
private key length as 2048 bits. Unfortunately, 2048-bit RSA keys
are gradually considered insecure. Utilizing the existing 2048-bit
multiplier is challenging because a 4096-bit message cannot be
stored in the multiplier. In this paper, we perform a thorough
study of RSA and propose a new method that achieves the 4096-
bit RSA cryptography with the existing hardware. We use the
Montgomery modular multiplication and the Chinese Remainder
Theorem to reduce the computational cost and construct the
necessary components to compute the RSA private key operation.
To further validate the correctness of the method and evaluate
its performance, we implement this method on a micro-controller
and build a testbed named CanoKey with three commonly used
cryptography protocols. The result shows that our method is
over 200x faster than the naı̈ve method, a.k.a., software-based
big number multiplications.

Index Terms—RSA, Montgomery, low-cost devices

I. INTRODUCTION

Public-key cryptography (PKC) is a part of many security
standards and protocols. During the digital transformation,
PKC is widely used to provide authentication via electronic
signatures or to achieve secure communication across unse-
cured networks channels [1], [2]. Servers, PCs and high-level
consumer electronics usually implement public-key cryptog-
raphy mechanisms implemented with software at a relatively
high speed (e.g., hundreds of signs/s on an Intel i7-8750H
CPU), however, such a software-only solution is too slow to
satisfy the overall performance of low-performance or low-
power devices such as widely applied embedded devices or
smart cards. Recent micro-controller units (MCUs), therefore,
introduce a public-key accelerator (PKA), an efficient hard-
ware accelerator, to speed up the public-key cryptography
operations. Due to the limitation of resources such as RAMs
and chip areas, most MCUs and smart cards come equipped
with a modular multiplier capable of handling multiplication
up to 2048 bits.

With the rapid development of computational technologies,
2048-bit RSA keys are gradually considered insecure. For
example, ECRYPT suggests using the private key at least
3072-bit long [3]. More guidelines also encourage or require
a 4096-bit private key, e.g., Debian’s guide to key creation
currently recommends 4096-bit keys [4]; and SSL Labs, one
of the most popular SSL testing tools to check all the latest

vulnerabilities, requires the 4096-bit private key to get a
100% score when benchmarking the SSL performance [5].
Therefore, there is an urgent requirement to update the key
length to 4096 bits. However, replacing all of the existing
chips is costly. Instead, it is critical to find an appropriate way
to support higher bits of RSA without replacing any existing
devices.

For efficiency, modern hardware design usually uses the
Montgomery modular multiplier to compute modular multipli-
cation [6]. However, using the existing 2048-bit Montgomery
modular multiplier (MMM) to achieve 4096-bit cryptography
is not trivial. The key idea of MMM is to transform the
number into the Montgomery domain and avoid expensive
division operations. Specifically, MMM introduces a constant
R > N , where N is the modulo and coprime with R. The
only division in MMM is a number divided by R, i.e., the
multiplication of two numbers a, b in the Montgomery domain
is computed as a · b/R mod N in the multiplier. In practice,
R is the power of two, which makes the division much
easier to implement. The Montgomery modular multiplication
is detailed in Section II-B. To utilize the 2048-bit MMM,
there are several major challenges: 1) The current devices
are aiming at achieving 2048-bit RSA cryptography, which
only supports 2048-bit operands, i.e., the private key and the
message. To make existing devices compatible with 4096-bit
operands, we should find an appropriate way to represent and
compute 4096-bit operands using the 2048-bit devices. 2) The
computation involves two domains, the integer domain and the
Montgomery domain. How can we convert a 4096-bit integer
domain number to the Montgomery domain with a 2048-bit
MMM?

Fortunately, the Chinese Remainder Theorem (CRT) is a
powerful tool to reduce computational costs. With the help
of CRT, we can use the 2048-bit MMM to compute the
medium results of the RSA private-key operation. Finally, we
utilize the carefully selected parameters to achieve the 4096-
bit operation.

To further validate the correctness of the method and
evaluate its performance, we implement this method on a
commercial off-the-shelf (COTS) micro-controller, i.e., HED
CIU98320B, which equips a 2048-bit MMM. We build a
testbed named CanoKey with three commonly used cryptog-
raphy protocols. The details are elaborated in Section IV-A.

Our major contributions can be summarized as follows:

• We design an algorithm that uses the most existing 2048-
bit Montgomery modular multiplier to achieve a 4096-bit
RSA cryptography mechanism without replacing any circuit
component.

• We implement the 4096-bit RSA cryptography on an exist-
ing device, which is equipped with a 2048-bit Montgomery
modular multiplier.

• Experiment results show that our method achieves the
correct behavior of 4096-bit RSA cryptography, and makes
it over 200x faster than the software-based solution.

The rest of this paper is organized as follows. Section II
presents the overview of RSA, Montgomery multiplication
and the design of a PKA. Section III describes our proposed
algorithm in detail. Section IV presents the design of our
testbed CanoKey, and analyses the performance of the al-
gorithm. Section V introduces the related work. Section VI
concludes the paper.

II. PRELIMINARIES

A. Public Key Infrastructure and RSA

Public Key Infrastructure (PKI) is widely used among
information systems. With PKI, users generate a pair of keys,
and the one is called the public key that can be published
everywhere to encrypt the message, and another is called the
private key, which is used to decipher the message, and it is
always secret. Different from Symmetric Key Infrastructure
(SKI), which only has a unique key for encryption and
decryption, users only need to keep private key secret, which
reduces the overhead of keeping the message transmission
safe.

RSA, named after Rivest, Shamir, and Adleman, was in-
vented in 1977 [7]. It is the most popular public key cryp-
tosystem. Technically, it randomly grabs two prime numbers
p and q at the beginning. Then, it choose (N, e) as the
public key, and (N, d) as the private key, where N = pq,
GCD(LCM(p − 1, q − 1), e) = 1, ed ≡ 1(modφ(N)), and
GCD is the greatest common divisor, LCM is the least com-
mon multiplier, φ is Euler’s function. After getting the public
key, the sender encrypts the message m by M ≡ me(modN)
before sending it to the receiver, and the receiver decrypts the
cipher M by m ≡Md(modN).

RSA is secure because currently, there is no polynomial-
time algorithm to split number N into p and q. The only way
is to go over every integer within [2, N−1] and see if it can be
divided by N . Therefore, when N is extremely large, it takes
unacceptable time to find p and q. Currently, most hardware
fitted 2048-bits of N is gradually becoming unsafe, so we need
to find an appropriate calculation method to support larger bits,
saying 4096-bits, of N , with 2048-bits hardware.

B. Montgomery Modular Multiplication

As discussed in section II-A, RSA encryption and decryp-
tion should perform multiple modular operations, which means
getting remainder after division. Division, however, has a
high computationally overhead since it requires quotient digit

Montgomery DomainInteger Domain

Fig. 1. Compute modular multiplication using the Montgomery product.

estimation and then using multiplication and subtraction to
correct the quotient.

Montgomery modular multiplication eliminates division op-
eration by transforming the number to the Montgomery form,
further multiplies the number, and performs a certain number
of add and subtraction operations, thus reducing the com-
putational overhead. Many IoT devices, therefore, provides
hardware implementation of Montgomery modular multiplica-
tion to support fast encryption, decryption, or digital signature
authentication [8], [9].

Consider a k-bit prime modulus p, and let R = 2k. A
number a’s Montgomery form is

ā = a ·R mod p.

Assume we have a Montgomery multiplier ⊗. It implements
the Montgomery multiplication of two numbers, a and b, in
Montgomery form. The definition of a⊗ b is

a⊗ b = a · b ·R−1 mod p, (1)

where R−1 is the inverse of R of the modulo p. Given
a Montgomery multiplier, a · b mod p can be calculated as
Fig. 1. Rather than directly computing a · b mod p, we use
four Montgomery modular multiplications instead. The two
core operations are ⊗R2 and ⊗1, where the operation ⊗R2

converts a number from the integer domain to the Montgomery
domain, and vice versa. The correctness is obvious. Note that

ā = a⊗R2 = a ·R mod p,

b̄ = b⊗R2 = b ·R mod p,

c̄ = ā⊗ b̄ = a · b ·R mod p,

c = a · b mod p = c̄⊗ 1.

We implement a Rust-based Montgomery modular multipli-
cation and compare it to an open-source big number library
num-bigint [10]. The result shown in Table I is based
on a single multiplication, which contains four Montgomery
modular multiplications. In the real-world practice, saying
computing ab mod p, we only need to convert a into the

TABLE I
RUNNING TIME OF MODULAR MULTIPLICATIONS

Intel Xeon E5-2699 v4 Apple M1

num-bigint 405ns 460ns
Montgomery
modular multiplication 380ns 264ns

Montgomery domain once, then perform the Montgomery
modular multiplication b − 1 times, and finally convert the
result to the integer domain once, which makes the running
time significantly less than the naı̈ve multiplications.

C. RSA with CRT

For efficiency, the Chinese Remainder Theorem (CRT) is
usually used for reducing the computation. In RSA-CRT, the
private key is denoted as (p, q, dp, dq, qinv), where dp =
d mod (p− 1), dq = d mod (q − 1), and qinv = q−1 mod p.
Then the private key operation is computed as Algorithm 1,
which is four times faster than direct exponentiation.

Algorithm 1 Private-key operation of RSA-CRT.
Require: message m, private key (p, q, dp, dq, qinv)
Ensure: md mod N

1: Sp = mdp mod p
2: Sq = mdq mod q
3: h = qinv · (Sp − Sq) mod p
4: S = Sq + h · q mod N
5: return S

D. Public-key Accelerator

Fig. 2 demonstrates the block diagram of a typical public-
key accelerator (PKA). A PKA contains three major compo-
nents: the control and status registers, the adder and the mul-
tiplier, and the independent RAM. An independent memory
called PKA RAM is used for providing initial data to the PKA,
and for holding the results after computation is completed.
Access is done through the PKA AHB interface. Typically,
the PKA RAM is several KiBs (3.5 KiB for STM32L5X2,
and 3 KiB for HED CIU98320B). Once the data is loaded to
the PKA RAM, the operations are triggered by writing the
operation code to the control register. After the calculation is
done, an interrupt is triggered, and then the result can be read
from the PKA RAM.

III. THE XRSA ALGORITHM

In this section, we propose the method to construct a
4096-bit RSA private key operation using use a 2048-bit
Montgomery modular multiplier. This method is based on the
RSA-CRT algorithm. To be concise, we introduce ⊕ and 	,
and let a⊕ b = a+ b mod p, a	 b = a− b mod p.

PKA

AHB
interface

CONTROL

STATUS

Registers

PKA
RAM

PKA core
IRQ

interface

control

status

Adder Multiplier

Fig. 2. Block diagram of PKA

A. Compute R2

As shown in Fig. 1, turning a number from the integer
domain to the Montgomery domain is essential before per-
forming the Montgomery modular multiplication. Therefore,
we need to compute R2 mod p first. Assume that p is a n-bit
prime number, the procedure to compute R2 mod p is shown
in Algorithm 2.

Algorithm 2 Compute R2.
Require: a n-bit prime number p
Ensure: R2 mod p, where R = 2n

1: s = (R− 1)⊕ 1
2: s1 = s⊕ s
3: for i = 2; i ≤ n; i← i+ 1 do
4: si = si−1 ⊗ si−1

5: end for
6: return sn

To see the correctness of Algorithm 2, note that s1 =
2 · 2n mod p, and si = 2i · 2n mod p. Besides, Step 1
in Algorithm 2 is necessary because R = 2n can not be
represented in n bits (R− 1 is the largest number that can be
represented in n bits). Obviously, Algorithm 2 requires two
modular additions and n − 1 (or dlog2 pe − 1) Montgomery
modular multiplications.

While in the RSA-CRT algorithm, computing R2 needs to
be performed twice, i.e., for p, and q, respectively.

B. Compute mdp mod p

Once we have R2 mod p and R2 mod q, we are able to
compute the components in Algorithm 1. For a 4096-bit RSA
key, m is 4096-bit long, while p is 2048-bit long. Therefore,
the computation can be performed within the 2048-bit MMM.
We only need to deal with the 4096-bit m. Let R = 22048, and
m = m1 ·R+m2, where m1 = bm/Rc and m2 = m mod R.
Then we have

m mod p = (m1 ·R+m2) mod p

= (m1 ⊗R2)⊕m2

(2)

After computing m mod p, we can now compute mdp mod
p using the fast exponentiation algorithm [11]. In xRSA, we

propose a variant of the fast exponentiation algorithm, which is
shown as Algorithm 3. The major differences are the additional
Steps 3 and 7, which ensure that it runs in a constant time
regardless of the input values.

Algorithm 3 A variant of the fast exponentiation algorithm.
Require: m = m mod p, and dp
Ensure: mdp mod p

1: y = 1⊗R2

2: t = m⊗R2

3: for i = 1; i ≤ 2048; i← i+ 1 do
4: if the rightmost bit of dp is 1 then
5: y ← y ⊗ t
6: else
7: dummy ← y ⊗ t
8: end if
9: t← t⊗ t

10: dp ← dp >> 1
11: end for
12: return y ⊗ 1

Algorithm 3 requires 4,099 Montgomery modular multipli-
cations.

C. Private-key Operation

With the above results, we are finally able to finish the
private-key operation. Step 3 in Algorithm 1 can be imple-
mented using a modular subtraction and four Montgomery
modular multiplications (note that a modular multiplication
requires four ⊗ operations since we need the result h in the
integer domain).

However, the rest of the private-key operation (S = Sq +
h · q mod N) relies on modulo N , a 4096-bit number, which
cannot be done directly. Therefore, let us consider x ·y, where
x, y are 2048-bit numbers. Let x = x1 · 21024 + x2 and y =
y1 ·21024 +y2, where x1, x2, y1, and y2 are 1024-bit numbers.
Then we have x·y = x1y1 ·22048+(x1y2+x2y1)·21024+x2y2.
Let HI(x) = bx/21024c and LO(x) = x mod 21024, and the
result of x · y can be rewritten as Table II, where the header
indicates the bits of the result.

TABLE II
THE COMPOSITION OF x · y

4096∼3073 3072∼2049 2048∼1023 1024∼1

HI(x1y1) LO(x1y1)
HI(x1y2) LO(x1y2)
HI(x2y1) LO(x2y1)

HI(x2y2) LO(x2y2)

Note the fact that R−1 ≡ 1 mod (R − 1). If we let
R = 22048, we have a ⊗ b = a · b mod (R − 1) = a · b,
for a, b < 21024, since a · b < R − 1. Therefore, we are able
to use the Montgomery modular multiplier to compute the
product of two 2048-bit numbers. The computation requires
four multiplications and five additions (additions to compute

Fig. 3. The testbed CanoKey

1023∼2048 bit may overflow and the carry must be taken into
account).

To compute the result modulo N , let M = Sq + h · q, then
we have

M mod N =

{
M −N, if M ≥ N ;

M, otherwise.
(3)

Proof. The primes p and q in a legal RSA key should satisfy
the constraint p, q ≥

√
2(2nlen/2−1), where nlen is the bit

length of N [12]. Therefore, N = p · q ≥ 2nlen−1. The
maximum possible value of M is 2nlen−1, so M−N < N .

D. Complexity Analysis

This section discusses the complexity of the xRSA method.
Since the Montgomery modular multiplication takes the most
considerable time, we only measure how many multiplications
are in the implementation of this method. Note that Steps 1
and 3 in Algorithm 1 share the same modulo p, it would be
more reasonable to perform Step 2 first.

The complexity in each step is as follows:

• Step 1 & 2: 2047 ⊗ ops for computing R2 mod q, 1 ⊗
op for computing m mod q, and 4099 ⊗ ops for computing
the exponentiation, and 1 additional ⊗ op for converting the
result to the integer domain, i.e., 6,148 ⊗ ops in total for
each step.

• Step 3: qinv and Sq needs the conversion to the Montgomery
domain, and the result needs the conversion to the integer
domain. Therefore, 4 ⊗ ops are needed in total.

• Step 4: as shown in Table II, this step requires 4 ⊗ ops.

In summary, the xRSA method requires 12,304 Mont-
gomery modular multiplications.

IV. IMPLEMENTATION AND EVALUATION

To further prove the effectiveness of the proposed xRSA
method, we develop a testbed named CanoKey and imple-
ment several protocols that use RSA-4096. This section first
introduces the details of the platform we use and how we
implement CanoKey.

USB

HIDCCID NFC
(ISO 14443-4)

APDU Dispatcher

Applets

OpenPGP PIV WebAuthn

Services

File System

Crypto

RSA ECC

Fig. 4. The architecture of the testbed

A. Implementation

We use the HED CIU98320B micro-controller to implement
the testbed. Fig. 3 shows our testbed CanoKey. The core
of CanoKey is the HED CIU98320B micro-controller. We
also use a Fudan FM11NC08 NFC channel chip to support
contactless communication. HED CIU98320B uses an ARM
SecurCore SC000 32bit-RISC core with a 16 KiB RAM, a
3 KiB PKA RAM, and a 320 KiB flash. The PKA of HED
CIU98320B supports up to 2048-bit modular multiplications,
and the library provided by the vendor supports the RSA-2048
private key operations at the speed of 37 ops (operations per
second).

The PKA of the MCU provides four basic operations:
loading data to the PKA RAM, fetching data from the PKA
RAM, adding two numbers, and multiplying two numbers.
Based on these operations, we implement two RSA operations
following the xRSA method:

• int rsa_get_public_key(rsa_key_t *key,
uint8_t *n), which computes the public key given a
RSA private key, i.e., p · q;
• int rsa_private(rsa_key_t *key, const
uint8_t *in, uint8_t *out), which performs the
private key operation, used in signing or decrypting, i.e.,
the Algorithm 1.

Here, rsa_key_t is the RSA key with the CRT components,
i.e., (e, p, q, dp, dq, qinv).

Fig. 4 shows the architecture of the testbed CanoKey. Based
on the segregation of these RSA operations and other neces-
sary cryptographic algorithms (e.g., ECDSA, Ed25519, and
SHA-2), we implement three popular cryptographic protocols
(applets in Fig. 4), i.e., OpenPGP [13], Personal Identity
Verification (PIV, as specified in NIST SP 800-73-4) [14],
and WebAuthn [15]. OpenPGP is mostly used for signing and
encrypting emails as well as SSH authentication. While PIV
and WebAuthn are typically used to identify users with digital
signatures. We implement all the mandatory features of the
OpenPGP 3.4 and the PIV (NIST SP 800-73-4) specification.
The private key and other data are organized in a fail-safe
filesystem designed for microcontrollers – littlefs [16].

92.218

0.455

naïve xRSA

0.5

1

5

10

50

100

R
un
ni
ng
T
im
e
(s
)

Fig. 5. The running time compared to the naı̈ve multiplication

We also implement two kinds of interfaces for testing: USB
and NFC. The USB interface supports chip card interface
device (CCID) [17] and human interface device (HID) [18]
protocols, where OpenPGP and PIV use the CCID protocol
while WebAuthn uses the HID protocol. The NFC interface is
much simpler. We implement the ISO 14443-4 protocol [19]
for transceiving data via NFC. On top of these two interfaces,
we encapsulate the command and the response into the appli-
cation protocol data units (APDUs). APDUs are dispatched
to each applet globally. The above implementations have
been published open-source at https://github.com/canokeys/
canokey-core.

B. Evaluation

This section presents the evaluation result of the xRSA
method based on the testbed CanoKey.

1) Raw RSA-4096 performance: We use the SysTick
Timer [20] to measure the running time of the xRSA method.
The SysTick Timer is a standard 24-bit countdown timer with
auto reload. The timer source of the whole system is from the
USB, i.e., 48 MHz, with the accuracy of ±0.25%. Therefore,
in the evaluation, we measure the running time with the
resolution of 1 millisecond. Fig. 5 shows the average running
time of the xRSA method compared to the naı̈ve method. The
naı̈ve method is implemented using Mbed TLS [21], which is a
pure software solution based on the big number multiplication.
The result shows that our method is 203x faster than the naı̈ve
method.

While comparing to the vendor-provided RSA-2048, our
method achieves 2.2 ops, 17x slower than RSA-2048.

2) Correctness: To validate the correctness of the imple-
mentation, we utilize GnuPG [22] to run automatic tests. Each
round of tests contains the following procedures:

• Reset data in the OpenPGP applet;
• Generate three independent keys, i.e., signing, encrypting,

and authenticating keys and import them to the OpenPGP
applet;

• Sign the current timestamp with the applet and verify the
signature on PC;

TABLE III
RUNNING TIME OF SIGNING USING GNUPG

CanoKey YubiKey 5 NFC

Average running time 869ms 670ms

• Encrypt the current timestamp with the applet and decrypt
it on PC;

• Launch an SSH server and use the private key in the applet
to authenticate the SSH service.
The test script has been published as part of the testbed too.

During the 24-hour test on a laptop running Ubuntu 20.04, the
implementation passes every round.

3) The real-world performance: In this section, we discuss
the real-world performance in two folds. We first compare our
implementation with YubiKey 5 NFC [23]. YubiKey 5 NFC
employs an Infineon SLE 78CLUFX5000PH micro-controller,
which supports RSA 4096 natively. The conducted evaluation
is signing with a 4096-bit RSA private key using GnuPG.
Table III shows the average running time of signing an empty
string using the gpg command. Our method is 29.7% slower
than the native RSA-4096 support, indicating that this method
can provide a comparable result.

The second evaluation is performed on an Android phone,
i.e., a Redmi Note 8 Pro mobile phone with a Helio G90T
CPU running Android 10. The average power that NFC can
provide is several mWs [24]. NFC also limits the maximum
interval between the end of a frame sent by the reader and
the start of the response frame from the device. Therefore, the
implementation should balance the power consumption and
the computation speed. With a carefully selected frequency,
i.e., 20 MHz, our testbed passes the signing and decrypting
operations on OpenKeychain, an OpenPGP implementation for
Android, showing that this method can be applied to a low-
power scenario.

V. RELATED WORK

Before FPGA gets popular, researchers tried digital signal
processors (DSPs) to build a custom chip for RSA encryption.
Kochanski [25] was the first to try this. He implemented 512-
bit RSA on Fujitsu’s CMOS array, with the running time of
100 ms.

Kaedi et al. implements the RSA algorithm on a Spartan
6 LX75 FPGA [26], enabling lower power when using RSA
in IoT devices. Dai et al. proposes to use the Fast Fourier
Transform to help reduce the area and time for implementing
the Montgomery multiplication [27]. Verma et al. uses a carry-
save design for the Montgomery modular multiplier to achieve
a better area performance [28]. Bansal et al. presents a hybrid
Cryptosystem using RSA and Blowfish algorithm that suits
the cloud computing environment [29]. Most works focus on
the operand size less than or equal to 2048 bits, except for
Dai’s work [27]. The implementation results of [27] show that
supporting a 4096-bit operand costs twice the resources as a
2048-bit operand. Moreover, the look-up tables (LUTs) used

in this work are over 14k, which is relatively large for a chip.
For comparison, note that a RISC-V CPU core may cost less
than 2k LUTs, e.g., PicoRV32 [30].

On the contrary, many researchers focus on implement-
ing a small-sized Montgomery modular multiplier, e.g., less
than 1000 bits, for the Elliptic Curve Cryptography (ECC).
For example, Abd-Elkade et al. improves the radix-2 MMM
structure and reduces the critical path delay [31]. Khan et al.
incorporates the Karatsuba algorithm to improve the efficiency
of the Montgomery modular multiplication [32].

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper performs a thorough study of RSA and proposes
a new method that achieves the 4096-bit RSA cryptography
with the existing hardware. We use the Montgomery modular
multiplication and the Chinese Remainder Theorem to reduce
the computational cost and construct the necessary compo-
nents to compute the RSA private key operation. To further
validate the correctness and evaluate the performance of the
method, we implement this method on a micro-controller and
build a testbed named CanoKey with three commonly used
cryptography protocols. The result shows that our method is
over 200x faster than the naı̈ve method, a.k.a., software-based
big number multiplications.

B. Future Work

As this work has shown, the xRSA method provides the
possibility to achieve larger bits RSA operations on the COTS
devices. However, the following questions are left for future
research:
• Is it possible to use a 2048-bit MMM to construct even

higher, e.g., 7680-bit, RSA operations?
• How do we generate 4096-bit private keys using the 2048-

bit MMM? Since generating private keys is also important
to real-world applications.

ACKNOWLEDGMENT

We sincerely thank anonymous reviewers for their insightful
comments to improve our work. We thank Yuxiang Zhang,
Yichuan Gao, Bowen Xia, and Hongren Zheng for their
contributions to the testbed CanoKey. This work is partially
supported by the National Science Foundation under grant
NSF 1919154, and the China Postdoctoral Science Foundation
under Grant 2019M650685.

REFERENCES

[1] S.-Y. Chang, Y.-H. Lin, H.-M. Sun, and M.-E. Wu, “Practical RSA
Signature Scheme Based on Periodical Rekeying for Wireless Sensor
Networks,” ACM Transactions on Sensor Networks, vol. 8, no. 2, Mar.
2012.

[2] M. Suárez-Albela, P. Fraga-Lamas, and T. M. Fernández-Caramés,
“A Practical Evaluation on RSA and ECC-Based Cipher Suites for
IoT High-Security Energy-Efficient Fog and Mist Computing Devices,”
Sensors, vol. 18, no. 11, 2018.

[3] N. S. et al., “Ecrypt ii yearly report on algorithms and keysizes
(2011–2012),” Network of Excellence, Tech. Rep., 2012.

[4] “keyring.debian.org,” https://keyring.debian.org/creating-key.html, (Ac-
cessed on 05/2021).

[5] “SSL Server Rating Guide · ssllabs/research Wiki,” https://github.com/
ssllabs/research/wiki/SSL-Server-Rating-Guide, (Accessed on 05/2021).

[6] P. L. Montgomery, “Modular Multiplication Without Trial Division,”
Mathematics of Computation, vol. 44, pp. 519–521, 1985.

[7] R. L. Rivest, A. Shamir, and L. M. Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,” Communications of
the ACM, vol. 21, no. 2, p. 120–126, Feb. 1978.

[8] A. A. Abd-Elkader, M. Rashdan, E.-S. A. Hasaneen, and H. F. Hamed,
“Advanced implementation of Montgomery Modular Multiplier,” Micro-
electronics Journal, vol. 106, p. 104927, 2020.

[9] W. Wang, J. Han, Z. Xie, S. Huang, and X. Zeng, “Cryptographie
coprocessor design for IoT sensor nodes,” in 2016 International SoC
Design Conference (ISOCC), 2016, pp. 37–38.

[10] “rust-num/num-bigint: Big integer types for Rust,” https://github.com/
rust-num/num-bigint, (Accessed on 08/2021).

[11] D. M. Gordon, “A Survey of Fast Exponentiation Methods,” Journal of
Algorithms, vol. 27, no. 1, pp. 129–146, 1998.

[12] P. Gallagher, D. D. Foreword, and C. F. Director, “FIPS PUB 186-3
Federal Information Processing Standards Publication Digital Signature
Standard (DSS),” 2009.

[13] “Functional Specification of the OpenPGP applicationon ISO
Smart Card Operating Systems,” https://gnupg.org/ftp/specs/
OpenPGP-smart-card-application-3.4.pdf, (Accessed on 08/2021).

[14] “SP 800-73-4, Interfaces for Personal Identity Verification — CSRC,”
https://csrc.nist.gov/publications/detail/sp/800-73/4/final, (Accessed on
08/2021).

[15] “Web Authentication: An API for accessing Public Key Credentials -
Level 2,” https://www.w3.org/TR/webauthn-2/, (Accessed on 08/2021).

[16] “littlefs-project/littlefs: A little fail-safe filesystem designed for mi-
crocontrollers,” https://github.com/littlefs-project/littlefs, (Accessed on
08/2021).

[17] “USB Integrated Circuit(s) Cards Interface Devices,” https://www.usb.
org/sites/default/files/DWG Smart-Card CCID Rev110.pdf, (Accessed
on 08/2021).

[18] “Human Interface Devices (HID) Information — USB-IF,” https://www.
usb.org/hid, (Accessed on 08/2021).

[19] “Cards and security devices for personal identification — Contactless
proximity objects — Part 4: Transmission protocol,” International Or-
ganization for Standardization, Geneva, CH, Standard, Jun. 2018.

[31] A. A. H. Abd-Elkader, M. Rashdan, E.-S. A. M. Hasaneen, and H. F. A.
Hamed, “FPGA-Based Optimized Design of Montgomery Modular

[20] T. Martin, “Chapter 3 - Cortex-M Architecture,” in The Designer’s Guide
to the Cortex-M Processor Family (Second Edition), second edition ed.,
T. Martin, Ed. Newnes, 2016, pp. 71–130.

[21] “Mbed TLS - Trusted Firmware,” https://www.trustedfirmware.org/
projects/mbed-tls/, (Accessed on 08/2021).

[22] “The GNU Privacy Guard,” https://gnupg.org/, (Accessed on 08/2021).

[23] “USB-A YubiKey 5 NFC Two Factor Security Key — Yubico,” https:
//www.yubico.com/product/yubikey-5-nfc/, (Accessed on 08/2021).

[24] A. Lazaro, R. Villarino, and D. Girbau, “A Survey of NFC Sensors
Based on Energy Harvesting for IoT Applications,” Sensors, vol. 18,
no. 11, 2018.

[25] M. Kochanski, “Developing an RSA Chip,” in Advances in Cryptology
— CRYPTO ’85 Proceedings. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1986, pp. 350–357.

[26] S. Kaedi, M. A. Doostari, and M. B. Ghaznavi-Ghoushchi, “Low-
complexity and differential power analysis (DPA)-resistant two-folded
power-aware Rivest–Shamir–Adleman (RSA) security schema imple-
mentation for IoT-connected devices,” IET Computers & Digital Tech-
niques, vol. 12, no. 6, pp. 279–288, 2018.

[27] W. Dai, D. Chen, R. C. Cheung, and C. Koc, “Area-Time Efficient Archi-
tecture of FFT-Based Montgomery Multiplication,” IEEE Transactions
on Computers, vol. 66, no. 03, pp. 375–388, March 2017.

[28] R. Verma, M. Dutta, and R. Vig, “FPGA Implementation of RSA
based on Carry Save Montgomery Modular Multiplication,” in 2016
International Conference on Computational Techniques in Information
and Communication Technologies (ICCTICT), 2016, pp. 107–112.

[29] V. P. Bansal and S. Singh, “A hybrid data encryption technique using
RSA and Blowfish for cloud computing on FPGAs,” in 2015 2nd Inter-
national Conference on Recent Advances in Engineering Computational
Sciences (RAECS), 2015, pp. 1–5.

[30] “cliffordwolf/picorv32: PicoRV32 - A Size-Optimized RISC-V CPU,”
https://github.com/cliffordwolf/picorv32, (Accessed on 08/2021).
Multiplier,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 68, no. 6, pp. 2137–2141, 2021.

[32] “High-speed FPGA implementation of full-word Montgomery multiplier
for ECC applications,” Microprocessors and Microsystems, vol. 62, pp.
91–101, 2018.

