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ABSTRACT
Location awareness is the basis for enabling pickup service
at ride-hailing platforms. In contrast to the almost pervasive
coverage outdoors, indoor localization availability is still
sporadic in industry since it largely relies on RF signatures
from certain IT infrastructure, e.g., WiFi access points. Based
on our 2-year observations at DiDi ride-hailing platform in
China, there are 68𝑘 orders everyday created at black-hole,
i.e., where only cellular signals exist. In this paper, we present
the design, development, and deployment of TransparentLoc,
a large-scale cellular localization system for pickup posi-
tion recommendation, and share our 2-year experience with
50 million orders across 13 million devices in 4541 cities
to address practical challenges including sparse cell towers,
unbalanced user fingerprints, and temporal variations. Our
system outperforms the iOS built-in cellular localization sys-
tem in terms of four major service metrics, regardless of
environmental changes, smartphone brands/models, time,
and cellular providers.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mo-
bile computing; • Information systems → Location
based services; • Applied computing→ E-commerce in-
frastructure.
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1 INTRODUCTION
Indoor localization techniques have evolved in the past decade
alongside the growth of mobile networks, enabling mobile
applications such as indoor navigation and rescue services
to offer fine-grained, high-quality user positioning. While
Global Positioning System (GPS) is commonly used, research
efforts have explored alternatives like WiFi, Bluetooth, ul-
trasound, and visible light due to line-of-sight (LOS) con-
straints with satellites [5]. However, many locations lack the
necessary infrastructure, such as WiFi routers or ultrasonic
speakers, to provide indoor localization services, such as
underground parking lots at airports or subway stations.

In this paper, we share our two-year experience providing
accurate pickup services to passengers on DiDi, a prominent
ride-hailing platform akin to Uber and Lyft. The fundamental
service offered by ride-hailing applications is to connect dri-
vers with passengers, ensuring that the driver arrives at the
exact location where the passenger is waiting. This crucial
process relies on a pickup service that utilizes the passenger’s
position to recommend an optimal pickup location.

Our specific focus lies in addressing the challenges posed
by indoor environments known as "black-holes." These loca-
tions lack access to reliable positioning technologies such as
GPS signals, pre-collected WiFi fingerprint data, and dedi-
cated hardware deployment. As a result, users in these ar-
eas heavily rely solely on cellular signals for their location
awareness. A remarkable observation is that over 68,000
daily travel orders, accounting for approximately 2% of the
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total, originate from these black-hole locations on the DiDi
platform. This emphasizes the significance of our efforts in
providing efficient pickup services to users in such challeng-
ing areas.

To accomplish this, the pickup position recommendation
system relies on estimating the passenger’s location from cel-
lular measurements, which proves to be a challenging task.
The basic cellular positioning method, Cell ID (CID [34]),
suffers from significant location errors, often in the range
of hundreds of meters, due to the wide coverage of cell tow-
ers. Margolies et al. [22] leverage cellular signatures from
multiple cell towers to mitigate environmental interference.
Notably, DeepLoc [31] pioneers the use of neighboring cell
towers in training a deep learning model with geo-tagged 4G
cellular signatures as fingerprints, resulting in more accurate
and efficient user positioning compared to GPS.
Despite these advancements, large-scale deployment in

industry, particularly with the emergence of the 5G NR net-
work, poses challenges. Cell towers’ limited coverage and
penetrability compared to network connectivity [41], on-
going 5G infrastructure construction, and insufficient user
fingerprints near black-holes all impact localization robust-
ness. Furthermore, severe variations in cellular signatures,
especially with 5G, present additional obstacles to accurate
localization.
We developed a ubiquitous cellular localization system

called TransparentLoc, which leverages existing User Mea-
surement Data (UMD) for large-scale deployment without
the need for special hardware or fine-grained indoor fin-
gerprint collection. Instead, TransparentLoc uses large-scale
outdoor trajectories with geo-tags to incrementally construct
the cellular fingerprint set through crowdsensing, provid-
ing indoor/outdoor location inference even in GPS-denied
"black-hole" areas.

To achieve accurate and scalable cellular localization at a
large scale in the industry, we addressed the following chal-
lenges. First, we tackled the unpredictable temporal-spatial
variations in cellular signatures by proposing a cell tower
augmentation mechanism, which enhances signature dimen-
sions and periodically updates fingerprints to combat en-
vironmental interference, device diversity, and sparse cell
towers.
Second, to address the substantial storage and compu-

tation costs of constructing country-level fingerprint sets,
we introduced an effective feature extraction and lightweight
storagemechanism for processing incremental crowd-sourced
data.
Finally, we overcame the difficulty of precisely learning

the arbitrary distribution of cellular signatures and prac-
tical correlations among different cell towers by adopting
deep neural models with real-time requirements. Specifi-
cally, we used a meticulous Convolutional Neural Network

(CNN) model for cellular localization and a DeepFM model
for pickup position recommendation.
Our large-scale experiments, based on approximately 50

million ride-hailing orders across 13 million devices, demon-
strate the superiority of our cellular localization system. The
recommended pickup positions generated by TransparentLoc
achieve a 4.58% lower distance error compared to the iOS
built-in cellular localization system in the median. Addition-
ally, our system outperforms the iOS-based system in vari-
ous service metrics, irrespective of environmental changes,
smartphone brands/models, time, and cellular providers.

Our contributions are listed as follows:
• Practical Deployment and Evaluation: We present

the culmination of two years of extensive research, where
we have designed, deployed, and evaluated a large-scale
pickup location recommendation system. This system
encompasses a vast dataset of 50 million travel orders
across 13 million devices, spanning 4,541 cities. By shar-
ing our practical experiences, we aim to provide valuable
insights into the real-world implementation of such sys-
tems.

• Novel Crowdsensing Approach:We have developed
and implemented a pioneering crowdsensing approach
that eliminates the need for labor-intensive indoor fin-
gerprint collection. It overcomes common challenges en-
countered in real-world scenarios, such as sparse tower
coverage, unbalanced fingerprints, and long-term varia-
tions. By employing this approach, we address the lim-
itations of existing techniques and offer an improved
solution for accurate cellular localization.

• New Service Metrics for Large-Scale Evaluation: To
ensure the comprehensive assessment of our system’s
performance in diverse environments, we explore new
service metrics specifically designed for large-scale eval-
uation. These metrics alleviate the need for dedicated
manual efforts to measure the ground truth. By leverag-
ing these novel metrics, we demonstrate the robustness
and reliability of our system, providing a more accurate
evaluation of its effectiveness.

2 CELL TOWER AUGMENTATION
2.1 Challenges in Cellular Localization
As shown in Figure 1, current smartphones can report User
Measurement Data (UMD) in 4G LTE networks, which in-
cludes wireless channel measurements like Reference Signal
Received Power (RSRP), Received Signal Strength Indicator
(RSSI), and Reference Signal Received Quality (RSRQ)[15]1.
1In 5G NR network, RSRP and RSRQ slightly change to Synchronization
Signal Reference Signal Received power (SS-RSRP) and Secondary Synchro-
nization Signal Reference Signal Received Quality (SS-RSRQ), respectively.
We still use RSRP and RSRQ in this paper for consistency.
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(a) 4G LTE (b) 5G NR

Figure 1: User Measurement Data (UMD) in 4G LTE
and 5G NR network, recorded by a commodity app
“Network Survey [2]”.
Table 1: Proportion of the number of scanning cell
towers in both 4G and 5G networks

1 Tower 2 Towers 3 Towers >3 Towers
4G LTE 44.82% 4.83% 7.68% 42.67%
5G NR 53.48% 2.68% 5.50% 38.34%

RSRP represents the linear average of the received signal
power of resource elements and is an important power indi-
cator of themobile network. A strong RSRP reading generally
indicates better channel quality, suggesting proximity to the
cell station. RSSI is the average value of all signals, such as
pilot signals, data signals, neighboring interference signals,
and noise signals, and it can be used to compute the quality
of SS-RSRP measurements. RSRQ is the ratio of RSRP and
RSSI.

Although these channel measurement values theoretically
enable distance estimation to and from cell stations based
on wireless signal propagation models, complex wireless
channel environments, such as occlusions in urban cities,
often result in significant localization errors.

In addition to measuring connection states to the primarily
connected tower, mobile devices also record readings from
neighbouring towers, enriching cellular signatures for po-
sitioning. This technique has been adopted in state-of-the-art
academic research [22]. Intuitively, distances to neighbor-
ing cell towers help narrow down the user’s possible area,
enhancing localization accuracy.

However, deploying a large-scale cellular localization sys-
tem at the city level presents challenges due to the sparse
deployment of cell towers, especially for the rising 5G NR
network, currently under construction in many countries2.
2Most smartphones do not enable 4G LTE and 5G NR network connectivity
simultaneously.
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Figure 2: Deployment of 4G LTE and 5G NR networks
in the central region (2𝑘𝑚×2𝑘𝑚) in Beijing. The number
of 4G cell towers are more than 2x of 5G (4G: 37, 5G:
18), and 4G user fingerprints are more than 5x of 5G
(4G: 3550, 5G: 668).
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Figure 3: Temporal variations on cellular signatures
from the top 3 strongest cell towers over three weeks.

This hinders the accuracy and robustness of cellular localiza-
tion, limiting its usage mainly to emergency rescues. Below,
we present observations from a 2𝑘𝑚 × 2𝑘𝑚 test region over
a month and highlight three typical challenges in deploying
cellular localization in the industry.

(1) Sparse cell towers. Cell towers are sparsely deployed
to efficiently cover large areas, and there are significantly
fewer 5G towers compared to 4G since the 5G infrastruc-
ture is still in development. Figure 2(a) illustrates that there
are more than a double of 4G cell towers than 5G even in
the central region in Beijing. Furthermore, 5G towers have
short-range coverage (e.g., 100 ∼ 300𝑚) and weak penetrabil-
ity, resulting in infrequent 5G signatures from neighboring
towers. Based on our analysis with 1 million travel orders,
Table 1 shows that almost half of the orders can only detect
the connected cell towers. Notably, 5Gmobile users generally
hear fewer cell towers compared to 4G users.

(2) Unbalanced user fingerprints. The current quantity
of 4G users far exceeds that of 5G users due to mature 4G
deployment and cost-effective 4G smartphones. Figure 2(b)
shows that there are over 5 times more 4G user fingerprints
than 5G in the same test region. This imbalance hampers the
robustness of 5G localization across diverse smartphones,
locations, and orientations.
(3) Temporal variations. Figure 3 depicts daily RSRP

signatures of the top 3 strongest cell towers in 4G and 5G
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networks at a random location from Figure 2 over three
weeks. Since the measured RSRP values vary all in the same
region, capturing long-term dependency and resisting fre-
quent temporal variations are necessary for reliable cellular
localization. In addition, our dataset over China suggests that
4G signatures exhibit slightly stable compared to 5G, e.g.,
the RSRP measured in 5G was observed to be −77± 11.4𝑑𝐵𝑚,
while it was measured as −83 ± 11.05𝑑𝐵𝑚 in 4G.

2.2 Augmented Cell Tower as a Primitive
We aim to identify more available neighbouring cell towers
via existing mobile Application Program Interface (API), i.e.,
leveraging only public measurements on commodity smart-
phones for ubiquitous cellular positioning.We find that other
than the Cell ID (i.e., CID), there are more stable and useful
information such as PCI and EARFCN in 4G LTE network
(NR-ARFCN in 5G NR network) [15]. Specially, PCI stands
for Physical Cell ID, which represents both Group Cell ID
and Section Index of a 4G base station, i.e.,

𝑁𝑃𝐶𝐼 = 3𝑁𝐶𝑒𝑙𝑙 + 𝑁𝑆𝑒𝑐 (1)
where 𝑁𝐶𝑒𝑙𝑙 ∈ [0, 167] is the Group Cell ID, 𝑁𝑆𝑒𝑐 ∈ {0, 1, 2}
is the Section Index in each tower, and thus the PCI number
𝑁𝑃𝐶𝐼 ranges from 0 to 503.
In addition, the EARFCN in 4G, which is similar to NR-

ARFCN in 5G, denotes the Absolute Radio Frequency Chan-
nel Number [15]. It is a 16 bit integer ranging from 0 to 65535,
representing the different frequency bands of each cell tower
for communication.

Thus, we adopt (PCI,EARFCN) as the unique index for “aug-
mented” cell towers. Specially, two augmented cell towers
may locate at the same location, but orient to different direc-
tions (i.e., different sections of the tower), or transmit data at
different bands. For example, there are 39 “augmented” 5G
cell towers compared with only 18 real 5G cell towers over
the example region in Figure 2(a). This indicates the effec-
tiveness to enrich the dimension of cellular signatures with
more heard cell towers. In addition, Android does not ensure
the Cell ID information for neighbouring cell towers, thus
our mechanism also increases the stability of discovering
neighbouring cell towers in cellular localization.

3 SYSTEM OVERVIEW
Based on the augmented cell towers which provides suffi-
cient network connectivity, we design the TransparentLoc
system, which utilizes cellular measurements to ensure pick-
up point recommendation service for passengers staying at
“black-holes", e.g., office buildings, shopping malls, subway
stations, and underground parking structures. This service is
crucial for ride-hailing platforms since passengers may issue
travelling orders at anytime and anywhere.

Figure 4 shows the design overview of our system, which
consists of three major phases: fingerprint set construction at

Fingerprint Set Construction

Real Time Localization

Receptive region

User 

popularity

Cellular 

signature

Candidate region CNN

Outdoor

Indoor/Outdoor Feature map

Pickup 

Recommendation

Pickup 

position

Candidates

DeepFM model

Figure 4: TransparentLoc design at DiDi ride-hailing
platform. It leverages outdoor trajectories with geo-
tags to construct the cellular fingerprint set by crowd-
sourcing, and localizes indoor/outdoor passengers by
only cellular measurements. It further recommends a
customized pickup position and informs both passen-
gers and drivers.

outdoorwith geo-tags, localizationwith CNN at indoor/outdoor
by mere one-shot cellular measurements, and pick-up point
recommendation to guide indoor passengers where to take
the car.

In fingerprint set construction phase, TransparentLoc par-
titions the city map into equal grid cells, and produces the
receptive region3 for each cell tower by crowdsensed mea-
surements. Meanwhile, cellular signatures and user popular-
ity on each grid cell are incrementally updated and effectively
stored in the fingerprint set, with resilient representations
to combat arbitrary noise distribution in practice.
In localization phase, TransparentLoc produces an appro-

priate candidate region by cellular measurements from the
passenger’s mobile phone, and extracts a multi-dimensional
feature map over the corresponding area. The joint features
are fed into a meticulous CNN model to pinpoint user’s rela-
tive position toward the region’s center. Note that geo-tags
are only used for model training rather than location infer-
ence.
In pick-up recommendation phase, TransparentLoc pro-

vides a proper pick-up point for passengers, based on their
estimated locations by cellular measurements when staying
at black-holes. Different from traditional recommendation
methods, we have explored a specific designwith three stages
during its large-scale deployment, including pairwise sorting
instead of binary classification, customized recommendation
with personal history, and a DeepFM model for feature ex-
traction and learning.

4 FINGERPRINT SET CONSTRUCTION
The generalizability of the fingerprint set is crucial for industry-
deployed learning-based cellular localization. It should cover

3The "receptive region" refers to the geographical coverage area of a cell
tower where it provides reliable cellular signal coverage to mobile devices.
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Figure 5: Fingerprint set collection process.

(a) Map grid partitioning (b) Receptive region production

(c) Cellular signature representa-
tion

(d) User popularity counting

Figure 6: Fingerprint set construction with four steps:
map grid partitioning, receptive region production,
cellular signature representation, and user popular-
ity counting.
long periods, wide areas, and various devices to ensure accu-
rate and robust ubiquitous localization.

At DiDi ride-hailing platform,we have constructed a country-
level fingerprint set in 4,541 large/median/small cities in
China over two years. Figure 5 illustrates the data collection
process, leveraging crowdsensing to gather trajectories from
mobile users, including accurate GPS locations (geo-tags)
and associated cellular information, comprising servicing
and neighboring base stations.
Figure 6 outlines the four-step construction process of

our fingerprint set: map grid partitioning, receptive region
production, cellular signature representation, and user popu-
larity counting. We also employ a resilient and incremental
feature representation mechanism and efficiently store this
vast amount of data on the cloud.

Map grid partitioning. To gather cellular fingerprints
from crowdsourced travel trajectories with geo-tags, we vir-
tually divide the city map into equal grids (Figure 6(a)). Sam-
ples within each grid cell are aggregated to produce specific
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Figure 7: Arbitrary distribution of RSRP and RSRQ
signatures heard from a 5G base station at a grid cell.

features, enabling us to locate users anywhere, even with
fast-moving vehicles contributing to our fingerprint collec-
tion.

Receptive region production. We observe that user mea-
surement data includes cellular signatures from both primarily-
connected and neighboring cell towers. We aggregate sam-
ples with geo-tags for each augmented cell tower based on
its unique index (Section 2.2) to calculate its receptive re-
gion at the grid level (Figure 6(b)). We further adopt the
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm [29] to eliminate outlier grids.

Cellular signature representation. The abundance of
cellular signatures from both primarily-connected and neigh-
boring cell towers is essential for cellular positioning (Fig-
ure 6(c)). Storing such vast data as-is incurs redundant stor-
age and heavy computation. Existing approaches, like NBL [22],
assume Gaussian distribution for each cell tower, computing
mean and standard deviation values for feature representa-
tion. However, this assumption doesn’t hold in large-scale
deploymentswhere irregular distributions of RSRP and RSRQ
are common (Figure 7). To address this, we explore a bucket-
based storing mechanism [17].

After profiling all historical RSRP and RSRQ signatures in
China (Figure 8), we divide the signature range into seven in-
tervals with equal sample quantities. Each cell tower has spe-
cific buckets to store the quantity of corresponding samples
based on common bucket boundaries in signatures. When
any bucket value exceeds 256, all values are halved, and we
repeat this operation until they are all below 256. Each bucket
value is stored with one byte (e.g., Byte 1 ∼ 7 in Figure 9).
Additionally, another byte (e.g., Byte 0) stores the number of
halving operations. Thus, we store cellular signatures with
arbitrary distributions as an INT64 integer for each grid cell.
To capture the latest cellular signatures, we maintain a

sliding time window of 30 days, updating bucket values for
each cell tower daily.

User popularity counting. People are more likely to stay
at regional hot spots, i.e., Points of Interests (POIs) such as
restaurants, stores and entrances (Figure 6(d)). In order to
acquire the number of active popularity at each grid cell, we
employ two indicators which have been widely adopted in
website access statistics [3], i.e., Page View (PV) and Unique
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Figure 8: RSRP and RSRQ signatures of all 5G cell tow-
ers over China.
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Figure 9: Bucket-based storing mechanism on cellular
signatures.
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Figure 10: User popularity in a shopping mall along
four weeks in December.

Visitor (UV). Specifically, in terms of user measurement data,
we define PV as the total number of samples collected at a
grid cell over some time, and UV as the number of associated
users collecting the samples at this grid over the period.
Since recent visits are more valuable than earlier ones, we
incrementally update the counts with a Gaussian time decay
factor, i.e.,

ℎ𝑃𝑉𝑗 =

𝐷∑︁
𝑑=0

𝑁 𝑃𝑉
𝑗,𝑡−𝑑 · 𝑔(𝑑), ℎ𝑈𝑉

𝑗 =

𝐷∑︁
𝑑=0

𝑁𝑈𝑉
𝑗,𝑡−𝑑 · 𝑔(𝑑) (2)

𝑔(𝑑) = 𝑒
− 𝑑2

2𝜎2 (3)

where 𝑁 𝑃𝑉
𝑗,𝑡

and 𝑁 𝑃𝑉
𝑗,𝑡

represent PV and UV values on cell
grid 𝑗 at time 𝑡 , respectively. 𝐷 indicates the date length
for statistic (30 days in our system), and 𝜎 is the Gaussian
time decay factor (1.33 in our system). Figure 10 depicts the
thermal maps on user popularity in a shoppingmall over four
weeks in December, and there are more passengers in the
last two weeks due to the Christmas and New Year Festival.
In sum, our fingerprint set is stored with a tree struc-

ture in database (Figure 11). The key for each “augmented”
neighbouring cell tower is the unique index (elaborated in
Section 2.2), and followed by the grid Cell ID on the map. At

 CellTower

 GridCell

 RSRP  RSRQ  PV  UV

 GridCell

 RSRP  RSRQ  PV  UV

 ...

 ...  ...

Figure 11: Data format in fingerprint database.
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Figure 12: Candidate region production and feature
map generation.

each grid cell, its features (RSRP, RSRQ, PV and UV) are all
incrementally updated everyday.

5 REAL TIME LOCALIZATION
In this section, we measure the real-time UMD from both
indoor/outdoor mobile users, and localize them in real time
based on our large-scale fingerprint set. As shown in Fig-
ure 12, our system consists of candidate region production,
feature map generation, and CNN model training/inference.

5.1 Candidate Region Production
Estimating an appropriate candidate region is crucial and
efficient in cellular positioning, e.g., determining whether
the user is inside a shopping mall or at a restaurant without
searching all fingerprints. The main challenge involves the
precision of central grid cell and the proper size of region
area (evaluated in Section 7.8). Too small regions may miss
correct locations outside the region, while too wide regions
cause a larger number of model parameters and unnecessary
computation during training/inference.

Denote the cellular signature is recorded as𝑀 = (𝑀𝑃 , 𝑀𝑄 ) ⊂
R𝑛×2, i.e., the RSRP and RSRQ readings heard from 𝑛 cell tow-
ers (sorted by the signal strength), and our algorithm consists
of three steps.
Step 1: Cellular signature normalization. We trans-

form the measured cellular signature to a normalized value
based on our bucket-based storing mechanism, and produce
the corresponding signature vector 𝑉 𝑃 and 𝑉𝑄 . We also
smooth such vectors with 𝛼 = 0.1 on its peak value.
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Step 2: Similarity computation. For the 𝑖𝑡ℎ heard cell
tower, its RSRP and RSRQ signature vectors (Byte 1 ∼ 7)
on grid 𝑗 are represented as 𝐹𝑃𝑖,𝑗 ⊂ R7 and 𝐹

𝑄

𝑖,𝑗
⊂ R7 in the

fingerprint set. We define the signature similarity as the dot
product between two vectors, i.e.,

𝑠𝑃𝑖,𝑗 =
𝑉 𝑃 · 𝐹𝑃𝑖,𝑗
| |𝐹𝑃

𝑖,𝑗
| |1

, 𝑠
𝑄

𝑖,𝑗
=
𝑉𝑄 · 𝐹𝑄

𝑖,𝑗

| |𝐹𝑄
𝑖,𝑗
| |1

(4)

where 𝑠𝑃𝑖,𝑗 and 𝑠
𝑄

𝑖,𝑗
represent the similarity on RSRP and RSRQ

signatures, respectively.
Step 3: Central grid selection. In order to derive the

most probable grid cell that the user may appear, we sum up
the weighted similarity of each grid cell 𝑗 over all heard cell
towers, i.e.,

𝑠 𝑗 =

𝑛∑︁
𝑖=0

𝑤𝑖 · (𝜆𝑃 · 𝑠𝑃𝑖,𝑗 + 𝜆𝑄 · 𝑠𝑄
𝑖,𝑗
) (5)

where 𝜆𝑃 = 0.5 and 𝜆𝑄 = 0.5 represent the weight for RSRP
and RSRQ signatures, respectively.𝑤𝑖 denotes the weight for
individual cell tower based on its signal strength, e.g.,𝑤𝑖 = 1
for the primarily-connected cell tower and𝑤𝑖 = 0.8 for the
strongest neighbouring cell tower.

Finally, we derive the grid cell 𝑗 with the highest score, and
regard it as the central grid. We further construct a square
area composed of 𝑁 × 𝑁 grid cells around the center grid as
a candidate region (𝑁 is set as 32 based on the the large-scale
experiments).

5.2 Feature Map Generation
Based on the candidate region, we aim to estimate user’s rela-
tive position towards region center via current measurement
data. Specially, we construct amulti-dimensional featuremap
on both primarily-connected and neighbouring cell towers
via the large-scale fingerprint set. For grid cell 𝑗 in candidate
region, its features on cell tower 𝑖 include four categories:

• RSRP signature similarity 𝑠𝑃𝑖,𝑗 ,
• RSRQ signature similarity 𝑠𝑄

𝑖,𝑗
,

• PV heat feature ℎ𝑃𝑉
𝑗
,

• UV heat feature ℎ𝑈𝑉
𝑗

,
where RSRP(RSRQ) similarities are calculated via Equation 4,
and PV(UV) features are computed via Equation 2. All of
them are incrementally updated based on crowdsourced tra-
jectories with a sliding time window (e.g., 30 days in our
system).
Next, we normalize the values on each feature domain

among all possible grids, and construct a multi-dimensional
feature map of the candidate region. If there is no features
in a grid, the feature value is set as zero. Finally, we stack
𝑊 = 4𝑛 feature maps among 𝑛 cell towers as the input of
CNN model.
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Figure 13: CNN structure, which consists of three con-
volutional layers, three max-pooling layers, and two
fully connected layers. Feature maps are represented
by 𝑐ℎ𝑎𝑛𝑛𝑒𝑙@ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ.

5.3 CNN Model for Localization
Instead of directly estimating absolute coordinates, our CNN
model predicts user’s deviated location (Δ𝑥,Δ𝑦) toward the
center point (𝑥0, 𝑦0) in candidate regionwithmulti-dimensional
feature maps.
Structure. As shown in Figure 13, our CNN model is

comprised of three convolutional layers, three max-pooling
layers, and two fully connected layers. In the first convolu-
tional layer, we employ a multi-scale framework that utilizes
three different convolution kernels (3 × 3, 5 × 5, and 7 × 7)
to extract spatial features at varying scales. Then, a 5 × 5
convolution kernel is used for the last two convolutional
layers. Also, three 2 × 2 max-pooling layers are leveraged
to reduce network parameters. Finally, features are flatten
and fed into two Fully Connected (FC) layers to predict the
relative location.

Loss computation. Based on the predicted location devi-
ation (Δ𝑥,Δ𝑦), user’s global coordinate (𝑥,𝑦) can be calcu-
lated by:

(𝑥,𝑦) = (𝑥0 + Δ𝑥,𝑦0 + Δ𝑦) (6)
where (𝑥0, 𝑦0) is the coordinate of the center point in candi-
date region. User’s ground truth location (𝑥,𝑦) is measured
by the opportunistic geo-tags, e.g., outdoor trajectories by
the window. In addition, we employ the Haversine formula to
compute the loss value, which implies the distance between
the predicted location and its ground truth along earth sur-
face, i.e.,

L = 2𝑟 arcsin (
√︂
sin2 (𝑦 − 𝑦

2 ) + cos𝑦 cos𝑦 sin2 (𝑥 − 𝑥

2 ))
(7)

where 𝑟 is the radius of the earth.
Implementation. Our models are implemented in Ten-

sorFlow. For training, we use the Adam optimizer with a
learning rate of 5e-4 and a batch size of 512. These settings
were determined through experimentation and optimization,
ensuring the best performance for our cellular localization
system. Training the model for 30,000 epochs allows it to
learn and adapt to the specific characteristics of our dataset
over China, enhancing its predictive capabilities.



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Road segment features and personal information

Embedding

FM Layer DNN Layer

Output LayerInner Product

Activation Function

Addition

Figure 14: DeepFM architecture for pickup recommen-
dation. It consists of an embedding layer, a FM layer, a
DNN layer, and an output layer.

6 PICKUP RECOMMENDATION
With the estimated position by cellular localization at black-
hole, DiDi ride-hailing platform provides an appropriate
pickup position for each passenger. Specially, our pickup
recommendation mechanism includes three steps, i.e., road
discretization, candidate estimation, and customized recom-
mendation.
Road discretization. Since passengers get on vehicles

mostly by road sides, pickup positions should also be pro-
duced along the road side. In order to simplify the searching
range, we divide roads into segments at 10𝑚 interval, and
calculate the quantity of user visits on each road segment at
different time.

Candidate estimation. First, we select all road segments
within 500𝑚 to construct the candidate set, and extract the
distance, user popularity, and historical trajectories on each
candidate segment. In addition, we add individual passen-
ger’s pickup history within 1500𝑚 from the estimated posi-
tion. Such personal information helps to ensure a minimal
satisfactory service in case there sometimes exist extreme
errors in cellular localization.
Customized recommendation. Traditional pickup rec-

ommendation at DiDi is formulated as a binary classification
problem, i.e., whether the suggested pickup position is within
tolerable region (less than 30𝑚). Our design has gone through
two stages during its large-scale deployment.
Stage 1: Pairwise ranking instead of binary classification.

Based on the crowdsourced large-scale orders, we propose
a scoring mechanism to all candidate pickup locations to
highlight the most confident ones, e.g., the suggested pickup
position should be near and at the same road side with the
practical one. Furthermore, we transform the binary clas-
sification issue into a pairwise ranking problem for better
recommendation accuracy.
Stage 2: Deep neural model. Traditional recommendation

in industry always adopt tree-based models, e.g. GBDT [14],
but such model does not support online learning due to

Table 2: The relationship between pickup position er-
ror and call ratio/long call ratio.
Pickup Position Error 0∼30m 30∼50m 50∼100m >100m

Call Ratio 17.76% 33.28% 48.28% 69.87%
Long Call Ratio 0.74% 4.30% 10.61% 27.08%

its non-differentiable parameters, hence it can not adapt to
dynamic orders which may extensively differentiate with
the training set. In addition, tree-based models are also poor
at capturing sufficient features with large amount of data.
Thus, we explore and adopt a DeepFM [10] recommendation
model.
The architecture of our DeepFM model is shown in Fig-

ure 14. Specially, it employs historical road features and
personal information (e.g., user ID, city ID, week index, hour
index) as inputs, and consists of four layers: 1) an embed-
ding layer, transforms personal information into vectors,
2) a Factorization Machines (FM) [26] layer, learns linear
and pairwise feature interactions, 3) a DNN layer, learns
high-dimension features by deep neural networks, and 4) an
output layer, combines FM layer and DNN layer to produce
the final score.

7 LARGE-SCALE EVALUATION
7.1 Methodology
Data collection. Our large-scale cellular-based pickup ser-
vice was deployed in practice with the DiDi application, a
ride-hailing service like Uber. Our fingerprint dataset was
collected and updated within 2 years, i.e., 2021-2022, across
China. Our test dataset was also collected within these 2
years from the real deployed system, including ∼50 million
orders, ∼13 million devices, and 918 brands of smartphones
with ∼9300 different models, across 4541 cities in China.
We tested our system with all three main cellular service
providers, i.e., China Mobile, China Unicom, and China Tele-
com.
It is worth to note that we only deployed our system on

the Android platform as iOS provides its built-in cellular
localization service. In other words, iOS users will use its
built-in cellular localization service to get a position, and then
use this position as the input for our pickup recommendation
service. Finally, the pickup recommendation service gives
a position and suggests users wait for the driver at that
position.
Metrics. We compare our system from multiple aspects us-
ing the following metrics:
(1) Pickup position error:While academic research typ-

ically evaluates location accuracy using absolute loca-
tion errors, it is impractical for the industry to cover
the vast array of smartphones and the diversity of
buildings in all cities. To enable large-scale evaluation,
we adopt a crowdsensing approach that measures the
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Figure 15: Performance across different scale of cities.

distance between recommended and actual pickup po-
sitions4. This distance metric is a key performance
indicator (KPI) in the industry, as it helps avoid users
making phone calls or extended conversations with
drivers during the pickup phase (Table 2).

(2) Over-30-meters ratio: Our experience indicates that
if the distance error is lower than 30 meters, the system
will provide both drivers and passengers with satis-
factory user experience because passengers typically
don’t want to move to another position on foot over-
30-meters far from them. Therefore, we calculate the
over-30-meters ratio as the ratio of the distance error
higher than 30 meters with respect to the number of
all the orders.

(3) Cancel ratio: If the system gives an incorrect posi-
tion of the passenger to the driver, the driver cannot
successfully find the passenger at that position. In this
case, the passenger may cancel the order. Therefore, a
lower cancel ratio means better system performance.

(4) Call ratio: Similarly, if the system gives an incorrect
position of the passenger to the driver, the driver may
make a phone call to ask where the passenger is. There-
fore, a lower call rate indicates better system perfor-
mance.

(5) Long-call ratio: Furthermore, drivers often keep call-
ing until they successfully pick up the passenger. There-
fore, if the driver stays calling longer than the 60𝑠 , it
means that the system gives a recommended position
too far from the passenger. To this end, a lower long-
call ratio means better system performance.

Comparisons. We consider the iOS built-in localization
results as a system-level solution, as it can access physi-
cal information, while our approach is an application-level

4The actual pickup position is recorded by drivers within the DiDi app when
passengers board vehicles, as it marks the start of ride charging process.

solution using only public APIs5. We also compare our re-
sults with existing methods, including CID [34], GMM [8],
NBL [22], DCCP [21], DeepLoc [31], and DMM [30].

7.2 Overall performance
Compared with iOS. The iOS system benefits from ac-
cessing physical information and unrestricted data at any
time, providing a strong foundation for localization. On the
other hand, our solution is an application-level approach
relying on public APIs and data collected during app us-
age. Moreover, iOS devices have a homogeneous software
and hardware environment, creating a controlled and sta-
ble ecosystem for localization. In contrast, Android devices
come from numerous manufacturers, resulting in a wide va-
riety of hardware sensors and software configurations. This
diversity introduces significant instability in the collected
fingerprints, making the localization task more challenging.
Our system outperforms iOS in terms of pickup location,

as shown in Figure 15(a). Specifically, our system achieves a
0.54m (4.58%) lower median distance error compared to iOS.
Additionally, our system exhibits lower over-30-meters ratio,
cancel ratio, call ratio, and long-call ratio, as illustrated in
Figure 15(b). This noteworthy accomplishment represents a
modest improvement over the iOS native mechanism.
Compared with alternatives. Figure 15(a) demonstrates
that our system achieves significantly better results com-
pared to various alternatives. Specifically, the distance error
of our system is 3.98m (26.15%) lower than DCCP, 13.34m
(54.27%) lower than NBL, 11.69m (50.98%) lower than GMM,
and 25.99m (69.81%) lower than CID. These improvements
are attributed to our incorporation of user visits, cellular
signatures, feature updating mechanism, and CNN model.
Regarding DeepLoc [31], which is designed for cellular

localization in areas with fixed sizes and cell towers, we com-
pare our approach with a specific area in a large city mea-
suring 570𝑚 × 510𝑚 with 114 cell towers obtained through

5We are unable to implement our method on iOS devices because iOS does
not provide developers with a publicly accessible API for obtaining signal
strength information from servicing/neighboring base stations.
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Figure 16: Performance across different scale of cities.
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Figure 17: Performance of different brands.
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Figure 18: Performance among 12 months at three typical cities.
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Figure 20: Performance across different service providers.

crowdsensing. Our method achieves a significant reduction
of 5.44m (32.63%) in median pickup position errors compared
to DeepLoc which uses a multinomial logistic model.
Compared with DMM [30]. DMM is a map matching ap-
proach that operates on sequential cellular requests, while
our method focuses on one-shot localization. Within DiDi,
we have also developed and deployed amapmatchingmethod
based on ListNet [6], Hidden Markov Model (HMM), and
Deep Neural Networks (DNN). For comparison, we repro-
duce the DMM system and evaluate its performance using
200 real-world traveling sequences from our dataset, cover-
ing a distance of around 1,700 kilometers. Figure 15(c) shows
that our approach has increased the precision by 9.43% (from
81.70% to 91.13%) and recall by 8.41% (from 79.99% to 88.40%),

thanks to the improved route connectivity andmore accurate
locations.

7.3 Impact of the city development level
Since different development levels of a city will have dif-
ferent environments, such as different heights of buildings,
different numbers of base stations, etc., which might affect
the fingerprint granularity and quality. Therefore, it is im-
portant to characterize our system performance in different
cities with different development levels.

To characterize the performance of our system with differ-
ent city development levels, we conduct experiments in three
cities with different scales of population. In particular, we
classify all the 4541 cities into three categories according to
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Figure 21: Comparison between 4G LTE network with
different fingerprint density and 5G NR network.

their population, i.e., small (<10 million), median (10∼20 mil-
lion), and large (>20 million). Then we calculate our metrics
in a typical city in each category, respectively.

Compared to iOS (Figure 16), our system gets lower pickup
distance error, over-30-meters ratio, cancel ratio, call ratio,
and long-call ratio, respectively. It indicates that our system
will derive better user experience no matter the development
level. In addition, the performance is found to be similar
across the three cities, indicating the model’s generalizability.

7.4 Impact of different brands and models
of mobile phones

Since different brands ormodels ofmobile phoneswill use dif-
ferent base-band chips, therefore, the cellular signal quality,
strength, etc., and further the fingerprint might be different
among different brands or models.

The distribution of different brands is shown in Figure 17(a).
The top 5 brands of mobile phones in our dataset are Xi-
aomi, Oppo, Samsung, Huawei, and Honor. As shown in
Figures 17(b) and 17(c), and Figure 19 we find that our sys-
tem outperforms iOS in terms of all the metrics. On top of
that, we compare the pickup position errors before and after
deploying our system on four mainstream brands of Android
smartphones: Mate 30 Pro, Mi 8, Oppo R17, and Honor V20.
As shown in Figure 23, the deployed median errors have
significant reduction of 15.33m (57.89%), 22.75m (67.29%),
16.34m (59.68%), and 37.77m (77.40%), respectively. These
mean that our system performs well regardless of the brand
and model of the smartphone.

7.5 Performance of fingerprint update
along with the time

Since environmental changes will affect the fingerprint, the
fingerprint should be updated within a certain period. To
verify if our system performs stable along with the time
and characterize the update mechanism of the fingerprint
sampling, we calculate the metrics of 12 months separately

in the year 2022, with respect to different populations of
cities.
As shown in Figure 18, our system deployed on the DiDi

application outperforms the iOS-based system most of the
time. Therefore, our system performs stably although the
environment is changing. In terms of temporal variations,
there is a difference of up to 2 meters in accuracy over the 12-
month period, emphasizing the importance of incremental
dataset updates.

7.6 Impact of different cellular service
providers

Since different cellular service providers own their base sta-
tions at different positions, the fingerprints collected may be
different among different providers. To verify if our system
achieves a good performance regardless of different service
providers, we calculate the metrics with different service
providers, respectively.
As shown in Figure 20(a), our service deployed on the

DiDi application achieves lower distance error compared to
the iOS-based system. In addition, as shown in Figures 20(b),
20(c), and 20(d), our system could also achieve a better per-
formance in terms of over-30-meters ratio, cancel ratio, call
ratio, and long-call ratio. Therefore, our system could achieve
a better performance regardless of cellular service providers.

7.7 Comparison between 4G LTE and 5G NR
To evaluate the effect of 4G and 5G on cellular localization,
we randomly select 100,000 travel orders within a week.
Figure 21 illustrates that the median pickup position errors
in 5G increase by 2.05m. This difference can be primarily
attributed to the sparser availability of 5G fingerprints in our
dataset. Specifically, we observe that the proportion of 5G
mobile users is significantly lower (10.3%) compared to 4G
users (89.7%).

To gain further insights, we conduct an experiment where
we randomly remove some 4G fingerprints while keeping
a comparable quantity of 5G fingerprints. Surprisingly, we
find that the pickup position error in 4G increased by 5.67m.
This result suggests that dense fingerprints and small cell
coverage play a crucial role in improving cellular localization.

7.8 Effect of localization hyper-parameters
and CNN features

Size of grid cells. Small grid cell size indicates fine-grained
fingerprints on the map, but as a risk of dropping out of the
candidate region with fixed number of grids. We compare
the distance error of the size from 20𝑚 to 200𝑚. As shown
in Figure 22(a), a box-plot diagram6, large size causes more

6Whiskers extend from the box by 0.5x inter-quartile range (IQR) [1]
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Figure 22: Performance across different localization
hyper-parameters. The horizontal line and the grey dot
in the box represent the median error and the mean
error, respectively.

distance errors, while small size has better accuracy. How-
ever, we have noted that the mean distance error of 20𝑚 was
worse than 50𝑚’s, even 70𝑚’s, which means that too small
size could have larger uncertainty. Based on the above obser-
vations, we choose the grid cell length of 50𝑚 and continue
the experiments.
Number of neighboring cell towers. Figure 22(b) depicts
the effect of the number of neighboring towers used on the
distance error. We clearly observe that using three or more
neighboring cell towers could produce stable accuracy. In
order to balance performance and robustness, we prefer to
use 5 neighboring cell towers.
Quantity of grid cells. With such grid size, Figure 22(c)
shows distance error with different number of grid cells to
form the candidate region. With the increase of the number
of grid cells, which means larger area of candidate region,
the median and mean distance errors decrease first and then
increase, and reach the optimal value when we choose 𝑁 =

32 grid cells.
Signature storing mechanisms. Figure 22(d) shows the
effect of our bucket-based storing mechanism on cellular
signatures. Compared with Gaussian distribution, our design
represents arbitrary distributions, thus it reduces median
distance errors by 1.45𝑚, and mean distance errors by 2.23𝑚,
respectively.
Ablation study on CNN features. To evaluate how much
the addition of the four CNN features (i.e., RSRP, RSRQ, PV
and UV) is actually helping, we perform an ablation study
on each feature. Figure 24 demonstrates that using all four
features provides the best accuracy.
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Figure 24: Ablation study
on CNN features.
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Figure 25: Performance of different pickup recommen-
dation stages.

7.9 Recommendation stage illustration
Recommendation stage one: from binary classification
to pairwise ranking.Whenwe prepare the dataset for train-
ing recommendationmodel, i.e., GBDT, there are two options.
One is to conduct a binary classification task, which indi-
cates that we only need to formulate positive and negative
samples. The other option is to perform a pairwise ranking
task, meaning that we should construct scoring samples. Fig-
ure 25(a) shows that the GBDT model trained by pairwise
ranking obtains at least 2% improvements over the dataset
trained by binary classification on all major service metrics,
e.g., over-30-meters ratio, cancel ratio, call ratio and long-call
ratio. Based on this result, we choose to construct and use
the pairwise ranking dataset instead of binary classification.
Recommendation stage two: from GBDT to DeepFM.
After adopting the pairwise ranking dataset, we contrast
the impact of GBDT and DeepFM for recommendation on
over-30-meters ratio, cancel ratio, call ratio and long-call
ratio. Figure 25(b) indicates that the average percentage im-
provements of the four metrics are nearly 2%when we adopt
DeepFM instead of GBDT, which shows that DeepFM learns
abundant feature representations in the pickup position rec-
ommendation issue. Based on the above, we prefer to apply
DeepFM in deployment.

8 RELATEDWORK
Cellular-based localization. Compared with GPS tech-
nique, cellular network could provide ubiquitous localization
for both indoor and outdoor environments [9]. First, Cell-ID
systems [34] used the position of the strongest power cell
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tower received by the UE as the estimated location of UE,
which only offers a low-accuracy localization. Then, Angle
of Arrival (AOA) [18, 23, 40] and Time of Arrival (TOA) [32]
based methods were proposed with specific hardware for
outdoor localization such as Unmanned Aerial Vehicle (UAV)
localization [7].

Besides, fingerprint-based methods were developed since
cellular stations were densely deployed [5, 9, 11, 16, 35]. For
example, Cellsense system [13] used the measured RSSI val-
ues to estimate the user’s location with a Bayesian-based
method. Margolies et al. [22] leveraged 4G LTE to create a
wide-area radio map and then developed a network-based lo-
calizationwith the fingerprintingmethod. Ray et al. [25] used
Hidden Markov Model (HMM) and particle filter methods to
obtain continuous trajectories. Chakraborty et al. [8] devel-
oped a geo-tagmethod using Gaussianmixturemodel (GMM)
to reduce the impact of noise. Tian et al. [33, 39] proposed
a subspace identification method, which could fully use in-
ternal relations of RF fingerprints to improve localization
accuracy. In fact, the high localization accuracy in the above
methods was still not guaranteed by using fingerprinting-
based methods, because the large-scale data measurements
and high-dimensional features were not fully exploited.
Deep learning-based localization. Compared with tradi-
tional machine learning methods (e.g., GMM, and HMM),
deep learning [19] could effectively extract data features,
which could address high-dimensional dataset and complex
classification or regression tasks. Therefore, deep learning
methods could be leveraged for indoor and outdoor local-
ization with wireless data. For example, Wang et al. pro-
posed the deep autoencoder network with channel state
information (CSI) data for indoor localization [36]. More
importantly, deep convolutional neural networks (DCNNs)
were also used for CSI image-based and tensor-based in-
door localization [37, 38], respectively. Moreover, adversarial
learning was also used to address the environment change
and heterogeneous device problems for indoor localization
with CSI and RSSI values [4, 20]. Also, neural network was
adopted to detect the building, floor, and location tracking
based on RSSI signals [27, 28]. Currently, the light-weight
neural network was also exploited to improve large-scale
indoor localization performance with Bluetooth Low Energy
(BLE) RSSI and geomagnetic field data [12].

Besides, deep learning techniques were also used for out-
door localizationwith cellular data. For example, DeepLoc [31]
system focused on spatial and data augmentation techniques
to reduce the calibration overhead in the training stage and
to address the noise in RSSI and GPS data. However, this
method only works in the small-scale outdoor environments.
Also, DCCP [21] proposed a CNN method for outdoor local-
ization with 4G LTE data. In addition, transfer learning was
proposed for cellular outdoor localization with 2G Global

System for Mobiles (GSM) and 4G LTE Measurement Report
(MR) datasets [42]. Moreover, deep reinforcement learning
was used for fast map matching [30] with cellular data. Dif-
ferent of the previous work that directly predicts the final
location, our TransparentLoc system first uses 5G NR to pre-
dict the user’ relate position with CNN and then calculates
the global coordinate, which can effectively reduce the local-
ization errors in large-scale area.

9 DISCUSSION
Network switching. While jointly using both 4G and 5G
measurement parameters can provide more comprehensive
information, it may not be practical in practice. Most smart-
phones do not enable connectivity across multiple networks
simultaneously, limiting their ability to detect cell towers
from other mobile networks. Additionally, manual switching
from 5G to 4G can be inconvenient for users and disrupt
the overall user experience. As a result, sticking with the
5G network, especially if the signal strength is adequate, is
often preferred over constant network switching.
Industrial service metrics. In order to minimize the impact
of occasional cases such as order cancellations or phone calls,
we conducted our evaluation with at least one million orders
or more. This approach ensures that there is little fluctuation
in each service metric, providing a more reliable assessment.
Integration with other approaches. Our method focuses
on one-shot localization without the need for an indoor map.
Integrating with indoor floorplans and other inertial tracking
methods (e.g., Zee [24]) could lead to improved location
accuracy and a more comprehensive localization solution.

10 CONCLUSION
In this paper, we share our technical insights and develop-
ment experience to provide large-scale cellular localization
availability for pickup service at DiDi ride-hailing platform.
We address many practical challenges we encountered dur-
ing the 2-year real-world deployment at most cities in China
with millions of orders everyday. We hope this work can
boost future attentions and efforts on cellular-based local-
ization techniques which enables crucial safeguard services
at anytime and anywhere. In future work, we will focus on
the presence of abnormal cell towers that can potentially
corrupt the cellular fingerprint dataset.
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