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ABSTRACT
The development of Internet of Things calls for ubiquitous and low-
cost localization and posture estimation. We present LiTag, a visible
light based localization and posture estimation solution with COTS
cameras. The core of LiTag is based on the design of a chip-less
and battery-less optical tag which can show di�erent color patterns
from di�erent observation directions. After capturing a photo con-
taining the tag, LiTag can calculate the tag position and posture
by combining the color pattern and the geometry relation between
the camera image plane and the real world. Unlike existing marker-
based visible localization and posture estimation approaches, LiTag
can work with a single camera without calibration, which signi�-
cantly reduces the calibration overhead and deployment costs. We
implement LiTag and evaluate its performance extensively. Results
show that LiTag can provide the tag position with a median error
of 1.6 2< in the 2D plane, a median error of 12 2< in the 3D space,
and posture estimation with a median error of 1�. We believe that
LiTag has a high potential to provide a low-cost and easy-to-use
solution for ubiquitous localization and posture estimation with
existing widely deployed cameras.

CCS CONCEPTS
• Networks ! Location based services; • Information sys-
tems ! Location based services; • Computer systems orga-
nization ! Special purpose systems; • Human-centered com-
puting ! Ubiquitous and mobile computing systems and tools.
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Figure 1: The application scenarios that LiTag can be used:
(a) a warehouse, and (b) a factory conveyor belt.

1 INTRODUCTION
Visible Light Positioning (VLP) has been shown as a promising
technique for indoor localization due to its low cost and high pre-
cision. Visible light signals can be easily generated, e.g., by LED,
and processed by camera or photodiode available on many mobile
and embedded systems. Many VLP techniques leverage specially
designed LED sources [1–4] or intrinsic light properties [5–8] to
enable localization on devices with camera or photodiode sensor.
Thus it usually requires the target to be equipped with cameras or
special sensors for localization.

Marker-based visible light positioning techniques [9–12] local-
ize the target by attaching markers (e.g. a QR-code or a special
designed planar marker) on it. Those approaches usually leverage
the geometry relationship between the marker and the image plane
of the camera to derive the location. Based on precisely calibrated
camera parameters, e.g., focal length, pixel size, etc., the relation
between the camera and the real world coordinate systems can be
used to calculate the markers’ position. Those approaches typically
require precise camera parameters as input for localization. How-
ever, camera parameters are not easy to obtain in practice, e.g., the
parameter may change due to changes of focal length while the
camera zooming in, zooming out, or autofocusing.

In this paper, we propose LiTag, a passive visible light positioning
and posture estimation system. The core of LiTag is the design of a
plastic optical tag which is totally chip-less and battery-less. The tag
contains a retrore�ection layer on the bottom which re�ects lights
back to the light source, just like RFID tags re�ect radio-frequency
signals. The re�ected lights then pass through a birefringent chip
caught in the middle of two polarizer chips. This results in a speci�c
interference pattern for light passing through the tag, which shows
di�erent colors from di�erent observation directions.
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After capturing a photo containing the tag, a camera in LiTag
can derive the relative position by combining the color pattern and
tag geometry. We design an algorithm to calculate the tag position
and posture with high precision by the geometry relation between
the camera image plane and the real world coordination. Unlike
existing marker-based visible localization and posture estimation
approaches, we show that LiTag can work with a single camera
without precise camera parameters, which signi�cantly reduces the
calibration overhead and deployment costs.

Considering the widely deployment of surveillance cameras,
ubiquitous localization and posture estimation can be made possi-
ble using LiTag at a very low cost. Based on its low cost features,
we believe LiTag can be promising to be a novel and supplementary
technique to RFID and visual-based markers in many application
scenarios in the future. For example, as shown in Figure 1, in a
warehouse and a factory, LiTag can support localization and pos-
ture estimation of objects with the readily deployed surveillance
cameras. The location and posture information can be used to sup-
port applications in these environments like auto-robot warehouse
objects management, and factory conveyor belt product operation,
etc.

The contributions of this paper are as follows.
• We present LiTag system which supports passive localiza-
tion and posture estimation. We believe it could be a useful
and low-cost approach for ubiquitous localization and pos-
ture estimation of everyday objects with widely available
uncalibrated cameras.

• We prototype the LiTag system with the following compo-
nents (1) a special chip-less and battery-less tag design, and
(2) a novel localization and posture estimation algorithm
which combines the interference pattern of the tag and the
geometry relationship between the camera plane and the
real world.

• We extensively evaluate the performance of LiTag in dif-
ferent scenarios. Results show that LiTag achieves posture
estimation with a median error of 1�, 2D localization with a
median error of 1.6 2< and 3D localization with a median er-
ror of 12 2< with COTS cameras like mobile phone cameras
and surveillance cameras.

2 LITAG BASICS
LiTag system achieves localization and posture estimation by cap-
turing a photo of optical tag on the target. LiTag leverages informa-
tion from the following two aspects: (1) the geometry relationship
between the target and its image in the photo, and (2) the spatial
related light pattern from the optical tag, which is introduced by
the birefringent interference phenomenon.

2.1 Geometry in camera imaging
Marker-based localization methods [9–12] and geometry-based lo-
calization methods [1, 2, 6] are based on the imaging principle of
camera, which builds a geometry relationship between the object
and the image. Geometry calculation such as bundle adjustment [13]
can be used to derive the location of the object. In this section, we
introduce the typical procedure of bundle adjustment to illustrate
the geometry relationship in camera imaging system, and show the
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Figure 2: Pinhole camera model imaging system.

limitation of traditional geometry-based and marker-based meth-
ods.

As shown in Figure 2, suppose we need to calculate the position
of the tree. In the pinhole camera model, light beams from the
tree pass through the pinhole and arrive at the image plane in the
camera. Light beams on the image plane are further translated into
an image by camera sensors such as CMOS sensor. For example, a
light ray from �1 on the object goes to �1 and a light ray from �0
goes to �0 on the image plane.

Assume a 3D coordinate system with the optical center of the
pinhole > as the origin. We name it as the coordinate system of the
camera. The I-axis is the direction perpendicular to the image plane
and pointing the forward direction of the camera. The distance
between the image plane and the optical center represents the
focal length � in pinhole camera model. The point on the object
�8 = (G8 ,~8 , I8 ) is mapped to point �8 = (08 ,18 , � ) on the image
plane. As �8 , > and �8 are on the same line, we have

��!
>�8 = :8

�!
>�8 ,

where :8 2  is the scaling factor depending on the position of the
object and the image plane. More speci�cally, we have G8 = :808 ,
~8 = :818 and I8 = :8� .

Assume the relative position of point�8 on the object is denoted
as ⌫8 = (D8 , E8 ,F8 ) in the coordinate system of the object itself. The
goal of the bundle adjustment method is to estimate the position
of corresponding object points �8 in the camera coordinate system
based on the coordinates of points on the image plane. The esti-
mated position of �8 can also be denoted as �8 = (:808 ,:818 ,:8� ).
Suppose there are = points�8 (1  8  =), the key idea is to estimate
the position of those = points by estimating  =< :1,:2, · · · ,:= >.

Denote 38 9 as the distance between two points �8 and � 9 , we
have

38,9 =
q
(G8 � G 9 )2 + (~8 � ~ 9 )2 + (I8 � I 9 )2

=
q
(:808 � : 90 9 )2 + (:818 � : 91 9 )2 + (:8� � : 9 � )2

(1)

Denote the distance between ⌫8 and ⌫ 9 as ⇡8 9 , we have

⇡8,9 =
q
(D8 �D 9 )2 + (E8 � E9 )2 + (F8 � F9 )2 (2)

It should be noted that ⇡8 9 can be measured in advance, e.g., based
on the known geometry of the object such as a QR-code or a special
designed marker. In bundle adjustment [13], we can obtain the
estimated  by

 = argmin
 

’
8

’
9

(⇡8 9 � 38 9 )2 (3)

In practice, this is an optimization problem and there are di�er-
ent methods to solve Eq. (3), e.g., gradient descent [14]. Here we
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only show the basic principle of bundle adjustment and omit the
details for di�erent methods to solve the equation. Interested read-
ers can refer to [14] for more details. It should be noted that the
unit of ⇡8 9 and 38 9 should be uni�ed. That is to say, 08 , 18 and �
should be measured in millimeter (or other units of Length) rather
than in pixel. When the pixel size and focal length are unknown,
some methods [12, 15–17] can estimate the focal length in pixels
and achieve pose estimation, but cannot localize the target due to
lacking of conversion scale between pixel and millimeter.

Geometry-based localization methods need precisely calibrated
camera parameters to convert the geometry relationship in object
coordinate into camera coordinate. It is di�cult for an uncalibrated
camera to obtain the target location using only the constraints in
camera imaging. However, camera calibration in the application
environment takes extra overhead. Even it can be conducted, the
focal length of the camera may change in practice, e.g., adjusting
focal length to obtain clear images of objects with di�erent distance.
This results in change of camera parameters. The camera needs to
be re-calibrated each time after the change of focal length.

2.2 Birefringent interference
The geometry constraints in camera imaging are not enough for
object localization and posture estimation using an uncalibrated
camera. The tag used in this work must provide more spatial infor-
mation. Birefringent interference is an ideal physical phenomenon.
Before illustrating birefringent interference, we need to introduce
some related physics concepts.
Polarization. Polarization is a special feature describing the os-
cillation direction of light. Natural light, e.g, sun light, and light
emitted from a lamp, has oscillation in any direction. Polarizer al-
lows a light beam passing through it when the oscillation direction
of the light is parallel to its transmission axis, and blocks the light
with perpendicular oscillation direction. A polarizer with a single
transmission axis is called linear polarizer.
Birefringence. Birefringence [18] is a feature of the optically
anisotropic material such as plastics, calcite, and quartz. There
is a special direction in birefringent material,which is called optic
axis. When a light beam passes through a birefringent material,
two rays of the refracted light could be observed. As shown in
the right part of Figure 3, a beam of polarized light will be split
into two rays in birefringent material, one ray with polarization
direction perpendicular to the optic axis is called ordinary ray and
the other with polarization direction parallel to the optic axis is
called extraordinary ray. For a certain type of birefringent material,
the ordinary refractive index is constant, while the extraordinary
refractive index varies depending on the incident direction.
Interference. When two light beams have the same frequency,
stable phase di�erence and same polarization direction, they can
interfere with each other. For a beam of light composed of light
with di�erent wavelength, when the optical path di�erence � is
�xed, the phase di�erence can be calculated as X = 2c�/_, which
is related to the wavelength _. This leads to di�erent intensity for
light of di�erent wavelength in the interfered light. Given a path
di�erece, the interference will lead to a certain light spectrum with
di�erent intensity at di�erent wavelength. Further, di�erent light
spectrums lead to di�erent observed colors.

Polarizer 1

Light source

Polarizer 2
Birefringent layer

Interference 
pattern

Polarizer 1

Polarizer 2

Birefringent 
materialordinary 

ray

Extraordinary 
ray

Figure 3: Birefringent interference phenomenon.

In our tag, there are a layer of birefringent material and two
layers of polarizer as shown in Figure 3. When a beam of ambient
light with all the polarization directions incident into birefringent
interference system, the light �rst passes polarizer 1 and becomes
a polarized light. The polarized light split into ordinary ray and
extraordinary ray in the birefringent material. The ordinary ray
polarized perpendicular with the extraordinary ray, and they have a
�xed optical path di�erence when leaving the birefringent material.
The second polarizer �lters out the components polarized along
its transmission axis from ordinary ray and extraordinary ray, the
two rays now have the same polarization direction. They interfere
with each other and change the spectrum, and show a speci�c color
when getting out the birefringent interference system. Light with
di�erent incident directions shows di�erent interference color due
to di�erent optical path di�erence. As shown in Figure 3, we can
simulate the color of the interference result according to [8]. Due
to interference, we have di�erent colors from di�erent observation
directions to the tag. The color of the tag can be used to indicate
the possible incident directions.

3 TAG DESIGN
In this section, we present the design of the chip-less and battery-
less tag, which can be used to achieve localization and posture
estimation of objects using uncalibrated camera.

3.1 Tag structure
From Section 2.2, we know that the color of birefringent interfer-
ence color can provide spatial information and indicate the possible
directions. However, in birefringent interference system, the light
source must be on the opposite side with the light screen, i.e. the
observation points. If we directly use birefringent interference phe-
nomenon to build our optical tag, there must be a light source on the
tag side to provide incident light. In order to make our optical tag
totally battery-less, we use a layer of retrore�ector in the structure
of the tag. Retrore�ector has a special structure and the light beam
can be re�ected to the source with a minimum of scattering [19],
which is widely used on tra�c signs.

As shown in Figure 4, a tag consists of two polarizers, %1 and
%2, and one �lm of birefringent material ( . The combination of
polarizers and birefringent material is the typical structure of bire-
fringent interference system, which is also used in [8]. A layer of
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Figure 4: The design of the tag in LiTag system.

retrore�ector ' is placed after %2, which can re�ect the light from
birefringent interference system back to its incident direction.

We illustrate the light paths in Figure 4. When a light beam
from the camera passes %1, it becomes a polarized light beam. As
shown in the right region in Figure 4, the light would split into
ordinary ray and extraordinary ray in the birefringent material ( .
After passing the polarizer %2, those two rays interfere with each
other and exhibit a speci�c color. Then, the light will be re�ected by
the retrore�ector ' and pass through the birefringence part again.
Then, the spectrum of the re�ected light change again when it
comes out from %1 and returns to the camera, leading to a speci�c
color observed by the camera.

If we change the incident direction of the light, the direction of
re�ected light accordingly changes. As a result, di�erent incident di-
rections lead to di�erent optical path between the ordinary ray and
the extraordinary, which accordingly lead to di�erent spectrums
of interfered light. Intuitively, this means the tag shows di�erent
colors from di�erent directions. Figure 5a shows photos of a tag
captured by a camera from di�erent directions. The results verify
that the tag shows di�erent colors in the photos from di�erent
directions.

3.2 Property of the tag
From each point of the tag, we can estimate the direction to the
point from the observer. In order to obtain location of the observer,
we need to choose multiple points on the the tag as anchor points.
By combining the direction information provided by all anchor
points, we can estimate the location of observer. Figure 5b shows the
localizationmodel of the tag.Without loss of generality, we consider
three points on a tag. When a camera captures a photo at position
%20< , the direction from %20< to each anchor di�erent from each
other, leading to a speci�c color for each anchor point. Those colors
for multiple points form a color vector which can determine the
position of the camera. Thus, the color on the tag can provide spatial
information according to the property of birefringent interference
phenomenon.

4 TAG LOCALIZATION AND POSTURE
ESTIMATION

In this section, we introduce the algorithm for tag localization and
posture estimation using an uncalibrated camera. The algorithm

(a)

3FDP

(b)

Figure 5: (a) The tag shows di�erent colors in di�erent obser-
vation directions. (b) Colors of anchor points can determine
the location of observer.

takes a photo containing a tag as the input, and derives the position
and posture of the tag in the coordinate system of the camera.

4.1 Overview
As mentioned in section 2.1, it is di�cult to achieve accurate local-
ization and posture estimation with geometry information from
an uncalibrated camera. We design an algorithm by combining the
light properties of the tag with the geometry information of camera
imaging. First, by leveraging the spatial information provided by
the light properties of the tag, we can obtain relative location of the
camera in the coordinate system of the tag. However, we cannot
obtain the posture information of the camera. Then, we calculate
camera posture based on the geometry information given the cam-
era location. To the best of our knowledge, this is the �rst method
which combines the location and geometry information to derive
camera location and posture without camera parameters. Based
on the camera location provided by the tag, we propose a posture
estimation method. The computational complexity of our posture
estimation method is much lower than traditional polynomial solv-
ing techniques [11, 15–17]. Then we calculate the posture and the
position of the tag by coordinate system transform based on the
posture and the position of the camera.

LiTag system mainly works as follows:
(1) Extract color on each anchor point. Calculate the location of

camera %20< in the coordinate system of the tag based on colors
of multiple anchor points.

(2) Calculate the posture of camera in the coordinate system of
the tag using camera location %20< and geometry relationship
between the anchor points and their images in the photo.

(3) Calculate the location and posture of the tag in the coordinate
system of the camera.
Figure 6 shows two coordinate systems of LiTag system: A tag

with its reference coordinate system -./ and a camera with its
reference coordinate system DEF . Denote three axes of reference
coordination system of the tag as

�!
- = (1, 0, 0), �!. = (0, 1, 0), �!/ =

(0, 0, 1). Similarly, the coordinate system DEF of a camera also has
three axes: (1) forward direction �!D = (1, 0, 0) represents the
camera’s pointing direction which is perpendicular to the camera’s
image plane, (2) up direction �!E = (0, 1, 0) represents camera’s
up direction, and (3) side direction �!F = �!D ⇥ �!E = (0, 0, 1) is
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Figure 8: (a) Camera posture dose not e�ect the observed
color vector on the tag. (b) Di�erent camera posture re-
sults in di�erent geometry information in the image.

perpendicular with both �!D and �!E . A notation in lowercase means a
location or direction in DEF coordinate system, while an uppercase
notation means it is in-./ system. For simplicity, we assume there
are four small anchor points in our �gure and those four anchor
points are the vertices of a square. The color of the vertex indicates
the color captured by the camera.

We denote the position of the camera as %20< in the tag’s refer-
ence coordinate -./ . We use the camera’s optical center to denote
the camera position. From the view of the coordinate system -./ ,
the relative posture of the camera can be represented by three axes
vectors as

�!
* ,

�!
+ ,

�!
, .

In the camera’s reference coordinate system DEF , the tag’s po-
sition is denoted as ?C06 . From the view of the coordinate system
DEF , the relative posture of tag can be represented by three axes
vectors of the tag’s coordinate system -./ as �!G , �!~ , �!I .

The task of our LiTag localization and posture estimation algo-
rithm is to determine %20< and

�!
* ,

�!
+ ,

�!
, , and then obtain ?C06 and

�!G , �!~ , �!I .

4.2 Localize the camera
We �rst need to obtain the camera’s location %20< in the tag’s
coordinate system according to colors shown on the tag. From
section 3, we know that from di�erent observing directions, the
camera captures di�erent colors showing on the tag’s anchor points.
We therefore build a map from the camera observing direction to the
color of each anchor point. Therefore, after the camera capturing a
photo, we �rst extract the color vector from the photo, then obtain
the camera location by the color vector and the mapping between
observing direction and color.

An intuitive solution for camera localization is to traverse the
positions in the localization space and calculate a color vector for
each point according to the mapping between observing direction
and color. Then, we can calculate the Euclidean distance between
the captured color vector and the color vector of each point in the
localization space. The point which have a minimum Euclidean
distance will be considered as the localization result. This method
requires traversal of all the positions, and leads to high computa-
tional overhead.

In the experiment, we have an important observation which
can help us to reduce the computation overhead. If we divide the
positions into groups by their / coordinate value, and highlight the
point with minimal Euclidean distance in each group. We observe
that these highlighted positions are approximately on a straight
line, as shown in Figure 7. This inspires us to determine the line
by checking the positions on a speci�c plane (e.g. the plane with
/ = 1<) at �rst, then we can only traverse the positions on this
line to �nd the position with minimal Euclidean distance value. The
computational overhead is much lower than the brute force search
in the entire space.

4.3 Estimate the posture of the camera
Then, we calculate the camera’s posture

�!
* ,

�!
+ ,

�!
, in the -./

system. As long as the camera optical center is �xed, the observed
color on each tag does not change regardless of the change of
camera rotate, yaw, and pitch. In other words, the color of tag does
not change when the camera change its posture, as long as the tag
is in its �eld of view. This property tells us the following two things.
On one hand, the camera’s position, which is related to the color
vector, can be derived regardless of the camera orientation. On the
other hand, the camera’s orientation cannot be derived from the
color vector.

We showwhy the camera posture cannot be obtained by tag color
in Figure 8. Based on the principle of relative motion, the change
of the camera posture is equivalent to the tag’s rotation around the
camera’s origin. In �gure 8, we �x the coordinate system DEF , and
transfer the camera’s orientation change into the camera’s point of
view. For better understanding, intuitively, we consider that there
is a line segment ! between the tag’s origin and camera’s origin.
The end of ! and the tag compose a rigid body, and the other end
of ! can rotate at the camera side as shown in Figure 8a. Figure 8b
shows the captured photo and corresponding images of the the
tag while the camera changes its posture. To derive the posture
of the camera, we leverage an important observation as shown in
Figure 8b. Di�erent camera postures result in di�erent shapes and
pixel position of the tag in the image. It is possible for us to derive
the posture of the camera based on the imaging relation between
the tag and its image in the photo. More speci�cally, this camera
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Figure 9: (a) Camera’s reference coordinate, image plane and the object plane.
(b) The side view of the projection of vectors in (a).
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Figure 10: Materials used for the tag:
retrore�ective cloth, transparent tape
and linear polarizers.

posture estimation approach does not require camera parameters
such as focal length.

Figure 9a shows the camera’s imaging process with a tag in 3D
space and its image in the image plane. Without loss of generality,
our discussion is based on the virtual projection surface rather than
the real projection surface. The image plane is usually a rectangle
perpendicular to the forward axis of camera that passes the center
of the rectangle. The up axis + is parallel to the vector from the
center of the image plane to the center of upper-side of the image
rectangle. �0 is the center of the photo, and ⌫0 is the middle point
of the upper-side of the photo. � and ⌫ are two points on the tag’s
-. plane, their corresponding image points are �0 and ⌫0. � and
�0 are all on the * axis, and

���!
�0⌫0 is parallel to + axis. Figure 9b

shows the side view of the projection of vectors in Figure 9a.
���!
�0⌫0

is parallel to
��!
�⇡ , which is the projection of

�!
�⌫ on the image plane,

i.e. +, plane.
�!
�⇠ is the projection of

�!
�⌫ on* axis.

Note that, we have obtained the camera’s location %20< in the
tag’s reference frame -./ in Section 4.2. Then, if we have the co-
ordinate of point � in the -./ system, we can obtain the camera’s
forward direction in the tag’s reference frame by

�!
* =

�����!
%20<�

|�����!%20<�|
(4)

where
�����!
%20<� is a vector from the camera to point A. If we also

have the position of point ⌫ in the tag’s -./ system, the camera’s
up direction can be derived by:

�!
+ =

���!
�0⌫0

|���!�0⌫0 |
=

��!
�⇡

|��!�⇡ |

=
�!
�⌫ � �!

�⇠

|�!�⌫ � �!
�⇠ |

=
�!
�⌫ � (�!�⌫ · �!* )�!*
|�!�⌫ � (�!�⌫ · �!* )�!* |

(5)

Then we can obtain
�!
, by

�!
, =

�!
* ⇥ �!

+ .
The remaining question is to calculate the coordinates of � and

⌫. We use perspective transformation from the object plane to
the image plane. Speci�cally, we know the position of each anchor

point in the tag coordinate system based on the tag geometry design.
Meanwhile, we can measure the position of those tags in the image
plane based on the image from the camera. Then we can build a
transformation that maps the coordinate from the image plane to
the tag’s -. plane. Since we know the coordinates of �0 and ⌫0 on
the image plane, we can derive the coordinates of � and ⌫ in -./
system.

4.4 Estimate the tag’s location and posture
We have calculated the camera’s location %20< and posture (

�!
* ,

�!
+

and
�!
, ) in tag’s reference coordinate system -./ in Section 4.2

and Section 4.3. Then, we transform tag’s location %C = (0, 0, 0) in
-./ , three axes - , . , and / into camera’s coordinate system DEF .
In DEF , the tag’s location can be calculated as

?C = (������!%20<%C ·
�!
* ,

������!
%20<%C ·

�!
+ ,

������!
%20<%C ·

�!
, ) (6)

where
������!
%20<%C ·

�!
* is the length of the projection of

������!
%20<%C on

�!
* . The axes of -./ in camera’s coordinate system DEF can be
calculated as

�!G = (�!- · �!* ,
�!
- · �!+ ,

�!
- · �!, )

�!~ = (�!. · �!* ,
�!
. · �!+ ,

�!
. · �!, )

�!I = (�!/ · �!* ,
�!
/ · �!+ ,

�!
/ · �!, )

(7)

Thus, we can derive the tag’s location ?C and posture information
�!G , �!~ , and �!I under the camera’s coordinate system. For better
understanding, we illustrate the whole process of LiTag localization
and posture estimation in Algorithm 1. We �rst obtain camera loca-
tion %20< in the -./ system by the observed color vector on the
tag. Then we leverages the projective relationship between the tag
in the image and the real tag to derive the projection transformation
matrix, and obtain coordinates of � and ⌫. Next, we use %20< and
coordinates of � and ⌫ to calculate the camera’s posture in the
-./ system. At last, the location and posture of the tag in the DEF
system can be derived by coordinate system transformation using
the camera location and posture in the -./ system.
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Algorithm 1: LiTag localization and posture estimation
Input:
n: The number of anchors on the tag.
⇠$ [8 ]: Color vector on each anchor, 8 2 {1, . . . ,=}.
(A>F8 , 2>;8 ) : Pixel position of each anchor, 8 2 {1, . . . ,=}.
(-8 ,.8 , 0) : The coordinate of each anchor in -./ system, 8 2 {1, . . . ,=}.
(A>F�, 2>;�) : Pixel position of A (photo center).
(A>F⌫ , 2>;⌫ ) : Pixel position of B (the middle point of the photo upper-side).
%C : The coordinate of the tag in the -./ system.
�!
- ,

�!
. ,

�!
/ : Axes of the -./ system.

Output:
?C : The coordinate of the tag in the DEF system.
�!G ,�!~ ,�!I : Axes of -./ in the DEF system.

1 %20< = CameraLocalization({⇠$ [1], . . . ,⇠$ [=] });
2 TForm = �tgeotrans((A>F1,...,=, 2>;1,...,=) ,( (-1,...,=,.1,...,=) ,’projective’);
3 [-� ,.�] = transformPointsForward(TForm,A>F� ,2>;�);
4 [-⌫ ,.⌫ ] = transformPointsForward(TForm,A>F⌫ ,2>;⌫ );

5 [
�!
* ,

�!
+ ,

�!
, ] = CameraPostureEstimation(%20<,�(-�,.�, 0),⌫ (-⌫ ,.⌫ , 0));

6 [?C ] = TagLocalization(%20<,%C ,
�!
* ,

�!
+ ,

�!
, );

7 [�!G ,�!~ ,�!I ] = TagPostureEstimation(
�!
- ,

�!
. ,

�!
/ ,

�!
* ,

�!
+ ,

�!
, );

8 return ?C and �!G ,�!~ ,�!I ;

5 IMPLEMENTATION
5.1 The tag and camera
A tag in our system consists of birefringence part and retrore�ection
part as shown in Figure 4. The materials we use to make a tag are
shown in Figure 10. For the birefringence part, we use transparent
tape as the birefringent material, which is cheap and show good
birefringence phenomenon. The tape layer is put between two
layers of linear polarizer. For the retrore�ective part, we use a kind
of retrore�ective cloth which can re�ect light to its source. A tag
with multiple anchor points is shown in Figure 11, the photo in (a)
is taken with a light source on the camera side, and (b) is taken
without light source. The tag in our experiment is small (about 15 ⇥
15 2<) and can be made even smaller in practice. The tag is totally
chip-less and battery-less, and it can be attached on object surface
to provide localization and posture estimation.

LiTag can work with COTS cameras. As the tag is totally passive,
it is better to have a light source near the camera. The light source
along with the camera is common. For example, typically there is a
�ashlight along with most of cameras of mobile phone, and surveil-
lance cameras are often equipped with light source for capturing
images in dark environment. In localization and posture estimation,
we do not require any camera parameters. Users can freely change
the focus of the camera and zoom in/out the camera. We use the
camera on iPhone X as shown in Figure 11 (c) in the experiments.
We assume no pre-known intrinsic parameters in our experiments.
The camera obtain color vector on the tag by detecting the tag in
an image leveraging OpenCV.

5.2 Ground truth and initial sampling
We leverage the high-precision and expensive commercial local-
ization system, OptiTrack[20], to obtain the location and posture
ground truth of the camera and the tag. The OptiTrack system is
a motion capture system, which has eight high precision infrared
camera with known location and orientation as shown in Figure 11.
The cameras we use in this OptiTrack system is the “Prime 41"
cameras, which is stated as “The most accurate motion tracking

�D� �E�

�F� �G�

Figure 11: Experiment environment of LiTag system in the
commercial tracking system OptiTrack. (a) The tag and mo-
tion capture markers with light source. (b) The tag and mo-
tion capture markers. Those markers are for OptiTrack to
obtain the groud truth of location and posture. (c) A mobile
phone with motion capture marker. (d) High precision mo-
tion capture cameras.

camera in the world" as shown in Figure 11 (d). Special designed
re�ective balls are used as markers for OptiTrack, which can re�ect
incident light back to its source and show very bright points in in-
frared cameras. Multiple re�ective balls are attached to the tracking
target in the motion track system. In order to obtain the location
and posture ground truth of the camera and tag in the OptiTrack
system (global coordinate system), we attach re�ective balls on the
camera and tag as shown in Figure 11 (a) (b) (c).

The initial sampling of the color distribution of the tag is also
performed in OptiTrack system.We �x the camera andmove the tag
in camera’s view as shown in Figure 11.We change the tag’s location
and posture to collect the mapping between color and direction.
Then a �ne-grained mapping between color and direction can be
obtained by interpolation. In our sampling, the distance between
the tag and the camera is within the interval [1.7 <, 2 <]. Note
that for all tags of the same design and material, we only need to
conduct the initial sampling for one time.

5.3 Identi�cation of the tag
To distinguish di�erent tags, we can use the tag material to encode
the tag’s id as in [8], which use orthogonal polarizer directions
to represent ‘0’ and ‘1’, respectively. We can also learn from Fer-
roTag [21], and arrange the birefringent material to form special
colorful patterns on the tag. The patterns can help us to identify
di�erent tags. We can also attach di�erent QR-codes on each tag to
support identi�cation as shown in Figure 11. Note that identi�ca-
tion is di�erent from localization and we do not use those codes in
localization.
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Figure 12: (a) Camera localization accuracy using a single photo: CDF of location error and direction error. (b) Camera location
error distribution using an individual photo and usingmoving average. (c) Camera localization accuracy usingmoving average.
(d) Camera localization accuracy with di�erent perspective angle.

6 EVALUATION
We mainly measure the basic performance and validate the feasibil-
ity of LiTag system from the following aspects:

• The localization accuracy of the camera in the coordinate
system of the tag.

• The posture estimation accuracy of the camera in the coor-
dinate system of the tag.

• The localization and posture estimation accuracy of tag in
the coordinate system of the camera.

• The system performance under di�erent scenarios. It in-
volves the camera’s perspective angle, distance, pixel posi-
tion of the tag in the photo, image resolutions, and di�erent
types of ambient light.

In all experiments, we obtain the ground truth of localization and
posture estimation based on the OptiTrack.

6.1 Camera localization accuracy
In this section, we examine the accuracy of the �rst step of LiTag
system, i.e., using the observed tag color to localize the camera in the
tag coordinate system. In this experiment, we �x the tag and change
the position of the camera. We characterize the camera localization
accuracy with two metrics, location error and direction error.
Location error is the distance between localization result %20<_A and
ground truth location %20<_6 . Direction error is the angle between
two vectors:

�������!
$%20<_A and

�������!
$%20<_6 , where $ is the origin of the

-./ coordinate system.

6.1.1 Basic performance. In order to test the basic performance
of camera localization, we put the tag at the origin and move the
camera, and keep the distance between them within [1.7 m, 2 m],
which is the initial sampling distance range. Figure 12a shows the
CDF of camera localization error using one photo. We can see that
the median location error of the camera is about 15 2< and 80%
location error is lower than 33 2<. The median direction error is
about 1� and 90% of the direction error is lower than 2.1�. The result
shows that the direction accuracy is very high, but the location
accuracy is lower than the direction accuracy.

Considering the camera direction result has high accuracy, it is
possible for us to use the moving average of the distance from the
camera to the tag to reduce the location error of camera. In this

case, we assume the camera’s moving is not fast, and it captures
the photo continuously. During localization, the system stores a
few distances of latest camera location results. After the camera
capturing a new photo, the system �rstly derives the camera po-
sition and its direction, then calculates the average distance with
the stored distances. With an accurate estimated direction, we can
re�ne the position by moving the point from the tag toward the
estimated direction by the average distance. We start from the dis-
tribution of distance errors to clarify it is reasonable. The solid line
in Figure 12b shows the distribution of the distance error using
an individual photo. We can see the distance error distribution is
similar to the Gaussian distribution, and the peak appears when
the error is zero. After moving average, it has a high possibility
to get a lower distance error than the error from the individual
photo, which provides us the basis to re�ne the location error by
moving average. The dashed line in Figure 12b shows the distribu-
tion of the distance error after applying the moving average. To
verify its e�ectiveness, we show the camera location accuracy after
using moving average in Figure 12c. We can see the location error
decreases signi�cantly compared with that in Figure 12a, i.e., the
median location error of camera is about 11 2< and 80% location
error is lower than 20 2<. In Section 6.2 and Section 6.3, we use
the result after applying moving average as the camera localization
result for camera posture estimation and the tag localization.

6.1.2 Perspective angle. We investigate the impacts of the perspec-
tive anglek between

�������!
$%20<_6 (%20<_6 is the location ground truth

of camera) and the tag’s surface (-. plane of the tag’s coordinate
system) on localization performance in this experiment. Figure 12d
shows the performance of camera localization under di�erent angle
k . When k > 35�, the location accuracy and direction accuracy
are both high. LiTag system can provide accurate localization for
camera with perspective anglek > 35�. The performance decreases
signi�cantly whenk is lower than 35�. This is because whenk is
lower than 35�, the brightness of re�ection becomes much lower.
Therefore, the color captured from anchor points is not accurate
enough for localization. In the following section, we will show the
speci�c impact of the brightness of anchor points.

We also see that whenk increases beyond 75�, the distance er-
ror and direction error both increase slightly. This is due to the
distribution of birefringence color pattern, i.e., the color changes
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Figure 13: (a) Camera location accuracywith di�erent number
of visible anchor points. (b) Camera direction accuracy with
di�erent number of visible anchor points.
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Figure 14: (a) Camera localization accuracy for di�erent lo-
calization distance to the tag. (b) CDF of camera localization
error when the camera moves on a known plane.

more slowly around the center of the pattern. We can see evidence
in Figure 3 and RainbowLight [8]. The similarity for the color dis-
tribution in the center area introduces errors in detecting the real
direction from each anchor point.

6.1.3 Number of visible anchor points. According to our observa-
tion, not all of the anchor points on a tag can provide good color
information all the time. An anchor point maybe not bright enough
with some observing directions. The re�ection of the polarizer sur-
face increases with the incident angle, leading to an incident light
intensity decrease. We say that an anchor point is visible when the
color of the anchor point is bright enough. We explore the in�uence
of the visible anchor points number on the camera localization accu-
racy. The box plot in Figure 13a and Figure 13b shows the location
error and direction error with di�erent number of visible anchor
points, respectively. The number of anchor points varies from four
to eight. We can see that the location error and the direction error
both decrease with the number of visible anchors increase. We can
also see that four anchor points are enough to achieve acceptable
localization accuracy.

6.1.4 Impact of distance. We also explore the impact of distance
between the camera and the tag. Figure 14a shows the location error
and direction error with di�erent distances between the camera
and the tag using one photo. In this experiment, we �x the relative
posture of the camera and the tag, and move the camera to change
the distance. Note that the moving average improvement is not
suitable for this case due to the fast distance change. We can see
that the location error and direction error is acceptable when the
distance is within 2.8<, but both increase quickly when the distance
is above 2.8<. This is because we �x the camera’s exposure in this
experiment and the re�ected light intensity becomes lower for
a longer distance. When the distance is above 2.8<, the anchor
points on a tag are di�cult to be identi�ed. In order to test the
performance for a longer distance, we change the exposure to �t
the lightness, and move the camera to the distance of 4 <. We
measure the location error and direction error on a known plane at
4<. The result is shown in Figure 14b. The median direction error
is about 1.34�, and the median location error is 20 2<. We can see
that LiTag can still provide a high direction and location accuracy
for such a distance as long as the brightness is enough.

6.2 Camera posture estimation accuracy
In this section, we evaluate the e�ectiveness of camera posture
estimation. We use axis error to represent the camera posture
error. The axis error is the corresponding angle di�erence between
the camera’s real axes

�!
* ,

�!
+ ,

�!
, and the estimated axes

�!
* 0,

�!
+ 0,

�!
, 0.

6.2.1 Basic performance. As shown in Section 4.3, the estimation
of camera posture is mainly supported by projection transformation
result (coordinate of � and ⌫) and the camera position %20< . We
�rstly use the ground truth of camera location as the input of our
posture detection algorithm to measure the in�uence of projection
transformation. Theoretically, as discussed in Section 4.3, the detec-
tion of

�!
* axis only relies on the projection transformation result

of point �, while the detection of axes
�!
+ and

�!
, require the result

of both point � and ⌫. Because of the error existed in both � and ⌫,
the error on

�!
* should be lower than that on

�!
+ and

�!
, . This can be

veri�ed in Figure 15a which shows the angle error of three axes of
camera. We can see that the error on

�!
* axis is lower than 1� and

more than 97% of errors on
�!
+ and

�!
, axis are lower than 2�.

To show the in�uence of the camera position in camera posture
estimation, we use the camera’s location result %20<_A with moving
average obtained in section 6.1 as %20< in Eq. 4. Figure 15b shows
the angle error of three axes of the camera. From Figure 15b, we can
see that more than 91% of errors are lower than 3� on all three axes.
Comparing with Figure 15a, we can see that although the detected
location %20<_A of camera may deviate from %20<_6 , LiTag system
still has a high accuracy on camera posture detection. It means
that when the estimated direction is accurate, LiTag could get an
accurate posture estimation no matter what the location error is.

As the localization of camera only works well for the perspective
angle k <= 35�, we only involve data samples with perspective
anglek > 35� in Figure 15a and Figure 15b.

6.2.2 Perspective angle. We illustrate the impact of perspective
anglek on the camera posture based on the camera location ground
truth %20<_6 and the camera localization result %20<_A in Figure 15c
and Figure 15d, respectively. From Figure 15c, we can see the error
on all three axes decreases with the increase of angle k . This is
because whenk is smaller, the image of the tag deformsmore severe
in the photo and the projection transformation will be less accurate.
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Figure 15: (a) CDF of camera posture detection error on camera’s ’U’ (forward), ’V’ (up) and ’W’ (side) axis with the ground
truth of camera location as %20< . (b) CDF of camera posture detection error with the camera localization result as %20< . (c)
Camera posture estimation error with di�erent perspective angles using ground truth of the camera location. (d) Camera
posture estimation error with di�erent perspective angles using the camera localization result.
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Figure 16: Camera posture
error with di�erent local-
ization distance.
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Figure 17: Camera posture
error with tag’s image in dif-
ferent areas of the photo.

In Figure 15d, we can see that LiTag system can provide accurate
camera posture detection whenk > 35�.

6.2.3 Impact of distance. We also measure the impact of the lo-
calization distance. We keep the perspective angle k unchanged,
and vary the distance between the tag and camera in this experi-
ment. In Section 6.1.4, we show that the localization distance can
impact camera localization accuracy. Therefore, we use the local-
ization result %20<_A as %20< in this experiment. Figure 16a shows
the relation between the localization distance and camera posture
estimation accuracy. We can see that camera posture detection er-
ror increases when the localization distance exceeds 2.8<. This
is because the anchor point becomes darker for a longer distance.
However, posture detection error remains relatively small, and does
not increase with distance within 2.8<. LiTag can provide high
posture detection accuracy within its working distance.

6.2.4 Impact of camera distortion. Camera distortion may degrade
the performance of projection transformation. We conduct an ex-
periment to examine the impact of camera distortion. In order to
get rid of the e�ect of camera localization accuracy, we use %20<_6
as %20< in this experiment. Figure 17a shows the summation of
the mean axis error of

�!
* ,

�!
+ and

�!
, with the tag’s image in the

corresponding area of the captured photo. From Figure 17a, we can
see that although a higher total axis error appears when the tag is
shown at the edge of a photo than the tag is shown at the center, all

of the errors are lower than 2�. It means that the camera distortion
has little impact on our work.

6.3 Localization accuracy of the tag
After obtaining the location and posture of camera in the reference
frame of the tag, we can derive the location and posture of the tag in
the reference frame of the camera as stated in section 4.4. In this sec-
tion, we show the performance of LiTag system by the localization
and posture detection accuracy: (1) localization accuracy repre-
sented by location error between the estimated ? 0C and the real
?C in coordinate system DEF , and direction error between vector
������!
?20<?C 0 and vector ������!?20<?C . (2) posture accuracy of the tag: axis
error is the angle between the detected axes �!G 0, �!~ 0 and �!I 0 and
the ground truth of axes of the tag �!G , �!~ and �!I in the coordinate
system DEF .

6.3.1 Basic performance. Figure 18a shows the localization accu-
racy of the tag. We can see that the median location error is about 12
2< and 80% of the location errors are lower than 27 2<. The median
direction error is about 1� and 90% of the direction errors are lower
than 2.7�. Figure 18b shows the posture accuracy of the tag. We
can see that the median error on all three axes are about 1�, and
more than 80% of errors on each axis are lower than 2�. Although
the distance measurement still has some room for improvement,
the accuracy of direction detection and posture detection is very
high. This enables high precision posture based services in many
application environments.

6.3.2 Tag on 2D plane. In real localization scenarios, it is often to
see that objects move on a speci�c plane, e.g., a sweeping robot on
the �oor, transport vehicle on the roof of a warehouse, and an object
on a conveyor belt. This feature of the objects can help to further
improve the performance. Our method can detect the direction of
the tag quite precisely. Thus, if the working plane is known, we
can easily derive the distance between the tag and camera using
the precise direction, and obtain a more accurate localization result.
We conduct experiments to explore how much improvement can
be achieved given a target in 2D plane. Figure 19a shows the tag’s
localization error. We can see that the median location error is
about 1.6 2<, and 90% of location errors are lower than 4 2<. The
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Figure 18: (a) CDF of the location accuracy of the tag. (b)
CDF of the posture detection error of the tag.
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Figure 19: (a) CDF of the location error of the tag in 2D.
(b) CDF of the posture detection error of the tag in 2D.
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Figure 20: (a) Camera localization error with di�erent image resolutions. (b) Camera posture
detection error with di�erent image resolutions. (c)Tag successful detection rate with di�erent
image resolutions.
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Figure 21: Hue value of the
tag’s anchor point varies
for di�erent positions. It is,
however, stable under dif-
ferent color of light.

direction detection accuracy is also improved to 90% of direction
errors lower than 1.2�. Figure 19b shows that the posture detection
accuracy is also improved. This experiment shows that LiTag system
can provide high accuracy localization and posture estimation for
objects moving on 2D plane.

6.4 Impact of image resolution
Themeasurement of colors on the tag and the projection transforma-
tion are both related to image resolution. We conduct experiments
to evaluate the performance for images of di�erent resolutions in-
cluding 3840⇥ 2160, 1920⇥ 1080, 950⇥ 540, 384⇥ 216 and 192⇥ 108.
Figure 20a and Figure 20b show camera localization error and cam-
era posture error under di�erent image resolutions. There is no
obvious performance di�erence among resolutions 3840 ⇥ 2160,
1920⇥ 1080 and 950⇥ 540. The localization error for the image reso-
lution 384 ⇥ 216 is slightly higher. Note that it is di�cult to extract
usable data with the resolution 192 ⇥ 108. Figure 20c shows the
tag detection rate under di�erent image resolutions. We denote the
detection rate as the normalized number of successfully detected
photos, i.e., dividing the number of successfully detected tags under
other resolutions by the number under 3840 ⇥ 2160 resolution. We
can see that the detection rate are almost 100% for both 1920⇥ 1080
and 950 ⇥ 540. This shows that a typical resolution on common
cameras is enough for a 15 ⇥ 15 2< tag. The detection rate is close
to 0 for lower resolution, e.g., only 10 tags are detected under the
resolution of 384 ⇥ 216. These photos, however, are too blurred to

detect the tag and extract usable information, so it means other
vision-based methods may also fail at such a low resolution.

6.5 In�uence of ambient light
We conduct an experiment to evaluate the robustness of LiTag under
di�erent kinds of ambient light. We �x the camera and move the tag
on the same path, and change the color of light from a bulb. Figure 21
shows the hue of one anchor changes along the moving path, but
the hue value on the same position is very similar under di�erent
color of ambient light. The tag uses re�ective birefringent chips
which can re�ect light to its source. For example, the light from
the light bulb on the ceiling will be re�ected to the source position,
and thus will not be received by the camera. Moreover, the light
captured by the camera is the light re�ected by the retrore�ective
layer, which is emitted by the camera. Thus, this reduces the impact
of ambient light to the optical pattern of the tag.

6.6 Computation overhead
To enable LiTag to provide the localization and posture estimation
service, we need to enable typical surveillance cameras to detect
the tag and extract the features, i.e., tag colors and pixel positions,
from images captured. Then, the features are sent to the backend
server for further calculation. Therefore, we need to characterize
the computational overhead for edge devices and network. We
implement the tag detection function using OpenCV on a low-cost
Raspberry Pi 4B and test the running time for the detection. The
result shows that it takes 0.3 s to successfully detect a tag in a
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950 ⇥ 540 image. It means that Raspberry Pi supports processing 3
images per second. For each anchor point, we need to transmit 12
bytes (4 bytes for the hue value, and 8 bytes for the pixel coordinates)
for the extracted features. Thus, for a tag with 6 anchor points,
the total transmission overhead can be 72 bytes. According to our
experiment result, the localization and posture estimation on an
Intel i7-10700K CPU-based desktop costs 0.47 s. Such a cost is
acceptable for real system implementation and can support real-
time localization and posture estimation.

7 RELATEDWORK
7.1 Geometry-based methods
The camera-based approaches leverage camera intrinsic parame-
ters and known geometry relationship among landmarks. These
approaches can localize camera with known landmarks or localize
landmarks with known camera position. There are many localiza-
tion methods on the geometry information [9–12, 22, 23]. High
precision camera parameters are essential to these methods. In
computer vision, many marker-SLAM methods based on geom-
etry method are proposed [24–30]. These methods use specially
designed markers as the known points to localize the camera, which
is widely used in robot navigation, virtual reality and augmented
reality. Some Geometry-based camera localization approaches iden-
tify lamps with known position leveraging VLC (visible light com-
munication) methods [31, 32] and localize the camera using the
geometry constraints. Luxapose [2] is a smart application which
uses �ashing frequency for lamp identi�cation. PIXEL [1] also uses
geometry to localize camera, and uses optical rotatory dispersion
for lamp identi�cation.

7.2 Light feature based methods
Some works use specially designed LED light to generate identi-
�able features on the localization space [3, 4, 8, 33–39], and use
light intensity or color change to measure the location change.
[39] develops a light cover with polarizer and birefringent �lm to
cast light polarization patterns in the space. CELLI [4] generates
two sweeping lines with di�erent polarization direction and uses
sweeping lines for localization. SmartLight [3] modulates lights
with di�erent frequency by a LED array, then it use a convex lens
to project the light into the 3D space. The target is usually a pho-
todiode, which should have a battery and a MCU. Pulsar [5] uses
inherent features of photodiode, and �nds the relationship between
light incident angle and RSS. Those works usually need to modify
the hardware of lamp to modulate information into the illumination,
or require sampling of the light inherent features. RainbowLight [8]
uses birefringence to generate di�erent color pattern in di�erent
locations, then it derive the position of the camera related to the
anchor. However, RainbowLight uses active light and can only pro-
vide localization for cameras. Many methods such as [2, 6, 7, 40–42]
identify lights with known position. LiTell [6] and iLAMP [7] use
inherent features of �uorescent such as frequency and color spec-
trum to identify each light. Those two approaches do not need any
extra modi�cations on the lamp.

8 DISCUSSION
Non-Line-of-Sight Scenarios:Typically, light propagates through
a straight line in the air. Thus, VLP systems usually cannot work
in the Non-Line-of-Sight (NLOS) scenario. However, in practical
environments such as the supermarket and the warehouse, there
are typically multiple surveillance cameras. The surveillance cam-
eras can be arranged to reduce the blind spot and support coverage
from di�erent directions to the tag. Therefore, the NLOS problem
can be alleviated as long as a target with a tag can be captured by
at least one camera.
Working distance and tag size: The tag size is related to the
working distance, i.e., the larger the tag is, the longer distance the
system can work. In our prototype implementation, the tag size
is about 15 ⇥15 cm. The tag size can be changed according to the
application scenario, working distance, or camera resolution. For
example, for small objects, small tags should be used. Accordingly,
the camera should be deployed closer to the objects or cameras
with higher resolution should be used.
Comparison with RFID: LiTag is aiming to be a novel and supple-
mentary technique to RFID and visual-based markers. Comparing
with RFID, LiTag may have di�erent advantages and disadvantages.
LiTag should require LOS scenario to work while RF based ap-
proaches do not require LOS. LiTag system can provide localization
and posture estimation with a single camera, whether the tags are
static or moving. In RFID, it is still not easy to achieve accurate
localization and posture estimation with a single tag. RFID-based
applications typically su�er from multi-path e�ects, while LiTag is
less impacted bymulti-path. The working range of RFID is related to
the RF range while the working range of LiTag is related to camera
resolution and tag size. LiTag still has practical limitations which
should be addressed before it can be widely applied in practice.

9 CONCLUSION
We present LiTag system, a low-cost and easy-to-deploy solution
for object localization and posture estimation. LiTag system uses
uncalibrated camera to achieve localization and posture estimation
for a special designed chip-less and battery-less optical tag. The key
idea is combing the spatial information extracted form the tag’s
visible light properties and the geometry information from camera
imaging. We implement LiTag system and the evaluation results
show that it can achieve posture estimation with a median error of
1�, 2D localization with a median error of 1.6 2< and 3D localization
with a median error of 12 2<. We believe LiTag shows the potential
to enable localization and posture estimation for everyday objects
with widely deployed uncalibrated cameras for a wide range of
scenarios, such as warehouse, supermarket, industrial environment,
etc.
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