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ABSTRACT
The widespread adoption and ubiquity of smart devices equipped
with microphones (e.g., cellphones, smartwatches, etc.) unfortu-
nately create many signi�cant privacy risks. In recent years, there
have been several cases of people’s conversations being secretly
recorded, sometimes initiated by the device itself. Although some
manufacturers are trying to protect users’ privacy, to the best of our
knowledge, there is not any e�ective technical solution available.
In this work, we present Patronus, a system that can both prevent
unauthorized devices from making secret recordings while allow-
ing authorized devices to record conversations. Patronus prevents
unauthorized speech recording by emitting what we call a scramble,
a low-frequency noise generated by inaudible ultrasonic waves.
The scramble prevents unauthorized recordings by leveraging the
nonlinear e�ects of commercial o�-the-shelf microphones. The
frequency components of the scramble are randomly determined
and connected with linear chirps, and the frequency period is �ne-
tuned so that the scramble pattern is hard to attack. Patronus allows
authorized speech recording by secretly delivering the scramble
pattern to authorized devices, which can use an adaptive �lter to
cancel out the scramble. We implement a prototype system and
conduct comprehensive experiments. Our results show that only
19.7% of words protected by Patronus’ scramble can be recognized
by unauthorized devices. Furthermore, authorized recordings have
1.6x higher perceptual evaluation of speech quality (PESQ) score
and, on average, 50% lower speech recognition error rates than
unauthorized recordings.
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1 INTRODUCTION
Human beings have long used acoustic signals to exchange infor-
mation with each other. Human beings now use acoustic signals,
which is speech, to exchange information with ubiquitous smart
devices such as smartphones, smartwatches, and digital assistants
that are equipped with embedded microphones. While these speech
detection and recognition capabilities make possible many con-
venient features, they also introduce many privacy risks such as
secret, unauthorized recordings of our private speech [1, 2] that can
have real world consequences. For example, the Ukrainian prime
minister o�ered his resignation after an unauthorized recording
was leaked [3].

Manufacturers claim that they are trying their best to protect
users’ privacy, but there is no e�ective and user-friendly technical
anti-recording solution available despite the fact that anti-recording
is not a new problem. One existing anti-recording solution is to talk
near a white noise source, e.g., near an FM radio tuned to unused fre-
quencies, so that the conversation cannot be clearly recorded. This
approach is not user-friendly because the people having the conver-
sation must put up with the white noise that interferes with their
normal communication. A similar solution [4] emits high frequency
noise near the upper bound of human sensitivity; most people do
not notice the interference, but pets and infants may notice it [5],
so this solution is not environment-friendly. Electromagnetic inter-
ference was an e�ective anti-recording solution [6] in the past, but
modern microphones are immune to electromagnetic interference.
Moreover, all of these traditional anti-recording approaches cannot
allow authorized devices to clearly record conversations.

Any e�ective anti-recording solution must provide the following
three key properties: (1) normal human conversation should be un-
a�ected by the anti-recording solution meaning the anti-recording
solution should not change what humans hear while having a con-
versation; (2) unauthorized devices should not be able to make a
clear recording of any conversation protected by the anti-recording
solution; (3) authorized devices should be able to make a clear
recording of any conversation protected by the anti-recording solu-
tion.

One potential solution that can satisfy all three properties is to
generate multiple ultrasonic frequency sound waves because of the
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following two properties of ultrasonic waves. First, humans can-
not hear ultrasonic sound waves. Second, commercial o�-the-shelf
(COTS) microphones exhibit nonlinear e�ects, which means that
when these microphones receive multiple ultrasonic sound waves,
they generate low-frequency sound waves that can be heard by
humans and thus interfere with the clarity of recordings made with
those microphones [5, 7–12]. There are three main challenges that
must be overcome in order to develop an ultrasonic anti-recording
solutions that satis�es the three key properties:

(1) First, any ultrasonic anti-recording solutionmust defend against
potential attacks such as using Short-time Fourier transform
(STFT) to analyze unauthorized recordings and using �lters to
cancel out the low-frequency sound waves that interfere with
recording clarity.

(2) Second, ultrasound travels along a straight line [13], which
means a single ultrasonic wave generator can only interfere
with recording devices within a limited range of angles from
the generator. In practice, it is di�cult to design an ultrasonic
anti-recording solution that can neutralize all recording devices
within a large coverage area.

(3) Finally, the performance of authorized devices could be a�ected
by the ringing e�ect due to electronic behaviors. Such ringing
impulses are hard to be canceled and may remain in authorized
recordings, severely downgrading the quality of the descram-
bled recordings.

In this paper, we present Patronus, an ultrasonic anti-recording
system that satis�es the three key properties. Patronus has two key
components: the scramble that is the pseudo-noise generated at all
microphones, and descrambling that is the process to remove the
scramble for authorized devices. We form the scramble by randomly
picking frequencies from the human voice frequency band and then
shifting them to the ultrasonic band. To thwart STFT attacks, we
further �ne-tune the period of the scramble so that it cannot be
easily analyzed and canceled. We add a re�ection layer with a
curved surface to create a re�ected ultrasonic wave that can cover a
wider area. Finally, to mitigate ringing e�ects, i.e., sudden hardware
impulses due to discrete frequency changes of current waves, we
use chirps to smooth the frequency changing components of the
scramble, as shown in Figure 1.

Patronus lets authorized devices clearly record audio conversa-
tions by sending them the scramble pattern. With scramble pattern,
the authorized device applies the Normalized Least-Mean-Square
(NLMS) adaptive �lter [14] to cancel the scramble and thus produce
a clear audio recording of the conversation.

We implement a prototype of Patronus and conduct comprehen-
sive experiments to evaluate its performance. We use the Perceptual
Evaluation of Speech Quality (PESQ) [15], the Speech Recognition
Vocabulary Accuracy (SRVA, see Section 6), and speech recognition
error rates (1 - SRVA) to evaluate the performance of Patronus. Our
results show that only 19.7% of the words protected by Patronus’
scramble can be recognized by unauthorized devices. Furthermore,
authorized recordings have 1.6x higher PESQ and, on average, 50%
lower speech recognition error rates than unauthorized recordings.

In this paper, we provide several unique technical contributions
when compared to existing works. First, to the best of our knowl-
edge, Patronus is the �rst system to leverage the nonlinear e�ect

of COTS microphones to prevent unauthorized recordings while
allowing authorized recordings. Second, we perform a thorough
study of the nonlinear e�ects of ultrasound frequencies including
the e�ects of higher orders whereas recent works[7–9, 16] only
consider the order up to 2. This is critical for descrambling when
the signal components with order higher than 2 will likely lie in
the human voice frequency band, which means simply cutting o�
the high frequency components will result in message loss. Instead,
our descrambling solution carefully removes these higher order fre-
quencies using an NLMS �lter. Third, we mitigate ringing e�ects by
connecting scramble segments with chirps. This simpli�es learning
the coe�cients of impulse response in existing work [7], especially
when we deploy multiple ultrasonic transducers in a large space.
In general, our contributions are as follows:

• We propose a novel ultrasound modulation approach to pro-
vide privacy protection against unauthorized recordings that
does not disturb normal conversation.

• We do a thorough study around the nonlinear e�ect of ultra-
sound on commercial microphones and propose an optimized
con�guration to generate the scramble.

• To overcome the fact that ultrasound travels in a straight line,
we design a low cost re�ection layer to e�ectively enlarge
the coverage area of Patronus in a cost-e�ective way.

• We present Speech Recognition Vocabulary Accuracy, a new
metric to measure the recording quality. Our experimental
results with both PESQ and SRVA show that Patronus ef-
fectively prevents unauthorized devices from making secret
recordings.

The organization of the rest of this paper is as follows. Sec-
tion 2 introduces related work. Section 3 introduces the nonlinear
e�ect of common microphones, which we analyze more thoroughly
than existing works. Section 4 presents the design of Patronus. Sec-
tion 5 presents the prototype implementation of Patronus. Section 6
presents our evaluation results of Patronus. Section 7 discusses the
limitations of Patronus and future work, and Section 8 concludes
this work.

2 RELATEDWORKS
2.1 Nonlinear E�ect of Microphones
There has been a lot of research into the nonlinear e�ect of micro-
phones. For many years, the development of ultrasonic systems
on smartphones was restricted due to being limited to a roughly
4 kHz range of frequencies between the high end of human hear-
ing to the cuto� frequency of typical microphones. Furthermore,
some infants and pets can actually perceive frequencies within
this small band. Roy et al. [7] performed detailed research on the
nonlinear e�ects of microphones to break through these limitations
and expand the working frequency band for ultrasonic systems on
smartphones. DolphinAttack [9] leverages the nonlinear e�ect to
generate audio commands that are inaudible to humans. After being
recorded by the microphone, the input ultrasonic signals would
generate a shadow signal that could be recognized by VCS. There-
fore, attackers can perform unauthorized commands without being
discovered. Sur�ngAttack [12] uses oscillation of a surface such as a
table to transmit inaudible commands. With this modality, attackers
can deploy their speakers in hidden spots such as the back of the
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Figure 1: Using chirps to smooth the frequency
changing components of the scramble.
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Figure 2: System Overview.

surface being used to transmit the secret commands. LipRead [8]
extends the attack range by leveraging characteristics of human
hearing. It also puts forward a model to �lter out such commands
generated by the nonlinear e�ect. Metamorph [10] injects inaudible
commands into human-made commands to achieve unauthorized
actions. AIC [16] presents a mechanism that fundamentally can-
cels inaudible commands against VCS, which we will discuss as an
attack model in Section 4.2. NAuth [11] uses the nonlinear e�ect to
authenticate devices. Unlike most of these methods, Patronus aims
to preserve privacy by adding a removable scramble generated by
ultrasonic signals to the recorded human speech. From a technical
perspective, Patronus is unique in that it takes into account third
and higher order terms from the nonlinear e�ect. Our experiments
show those high order terms can a�ect recordings whereas most
existing methods (e.g., AIC) only consider the second order term
and assume the higher order sub-band of the microphone is clean.

2.2 Dual Channel Applications
Some applications leverage the di�erence between humans and
devices. For example, human eyes and devices have di�erent per-
ceptions of �icker frequency. Technologies exist that use this phe-
nomena to communicate between the screen and the camera with-
out a�ecting human vision [17–20]. Likewise, some technologies
modulate acoustic signals in ways that no human can detect to
communicate between devices [21, 22].

The di�erence between the sensitivity of humans and devices
is also used in privacy protection. Kaleido [23] protects a movie’s
copyright by adding a �ashing distractor with very high frequency
into movie frames that cannot be seen by human eyes. If such a pro-
tected movie is subsequently recorded by an unauthorized camera
equipped with a rolling shutter, the distractor will be visible on the
unauthorized recording because of its high sample rates making the
pirated recording a low quality recording. LiShield [24] also uses the
Rolling Shutter e�ect to reduce the quality of photos. Lights with
di�erent colors are set to �ash in alternating high frequencies that
provide normal lighting because human eyes cannot sense the �ash-
ing. However, cameras are in�uenced because the Rolling Shutter
samples column by column meaning unexpected color stripes will
appear on the photo. In the end, it prevents unauthorized cameras
from taking photos. Although Patronus has a similar motivation

to prevent unauthorized recordings, Patronus is di�erent from the
two papers as it targets acoustics rather than visuals.

3 NONLINEAR BEHAVIOR OF COMMON
MICROPHONES

In this section, we provide a brief primer about nonlinearity of com-
monmicrophones; amore comprehensive introduction can be found
in recent papers [7, 8]. Ideally, COTS microphones are linear sys-
tems. Given the input signal s(t), the output signal �(t) is expected
to be linear combinations of the input signal, i.e., �(t) = A1s(t)
where A1 is the complex gain quantifying the change of the phase
and amplitude. Due to the physical properties of materials and
variations in manufacturing, the components of a common mi-
crophone, such as the diaphragm and the pre-ampli�er, are im-
perfect and typically do not constitute a linear system. As a re-
sult, COTS microphones, which are widely equipped on smart-
phones and smartwatches, typically exhibit nonlinear behavior.
Speci�cally, the output signal �(t) is under nonlinear e�ect, where
�(t) = A1s(t) + A2s2(t) + A3s3(t) + · · · , and the power gains of
each component satisfy |Am | > |An |(m < n).

When the input signals are composed of two di�erent ultrasonic
frequencies, the output from a nonlinear microphone would contain
several new shadow sounds with frequencies that are a linear combi-
nation of the two input frequencies. Assuming that the input signal
is s(t) = cos(2� f1t) + cos(2� f2t) where f1 and f2 are the ultra-
sonic frequencies, the output signal would be �(t) = Õ+1

i=1Ais
i (t).

Without loss of generality, we assume f1 > f2 in the following
discussion. For each component Aisi (t),

si (t) = (cos(2� f1t) + cos(2� f2t))i

= µ +
i’

j=1
[� j cos(2� j f1t) + �j cos(2� j f2t)]

+

i�1’
j=1

[�j cos(2� (j f1 � (i � j)f2)t) + �jcos(2� (j f1 + (i � j)f2)t)],

where � j , �j , �j and � are coe�cients of the polynomial expansion,
and µ is the consequent constant.

After the pre-amplifer, the signals would pass through an embed-
ded low-pass �lter whose cut-o� frequency is usually 24 kHz. Since
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f1 and f2 are both ultrasonic frequencies, j f1 and j f2 are all ultra-
sonic frequencies. However, if i = 2j , j f1�(i� j)f2 = j(f1� f2)may
be a non-ultrasonic frequency when j is small enough. Therefore,
when the input signal is s(t) = cos(2� f1t) + cos(2� f2t), new audi-
ble cosine waves cos(2� j(f1 � f2)t) appear, where j = 1, 2, . . . ,k ,
k  i , and k(f1 � f2)  24 kHz. Existing works like BackDoor[7]
and DolphinAttack[9] make use of A2s2(t) but ignore higher-order
components; they essentially assume that for i > 2, |Ai | is relatively
small and has little e�ect on the output signal. However, in our
experiments, we �nd that more high-order components should be
taken into consideration as they do a�ect the output signal.

4 DESIGN
4.1 Overview
As shown in Figure 2, there are three parties involved in Patronus:
the Scramble Transmitter, authorized devices with descramble re-
ceivers, and unauthorized devices.

The Scramble Transmitter sends a series of scramble signals
with randomly varying frequencies. To ensure that unauthorized
voice recordings will be a�ected, the frequencies of the recorded
scrambles should be located in the human voice band. Therefore,
we use the Scramble Generator to generate random frequencies in
the target range, store them as a secret key, and send them to the
Descramble Receivers through Wi-Fi, Bluetooth, or other media.
The Scramble Generator then generates cosine wave segments ac-
cording to these frequencies. The generated segments are then sent
to the Frequency Shifter and their frequencies will be increased by
f0, which is an ultrasonic frequency. To ensure the scramble signal
is picked up by microphones of unauthorized devices because of
the nonlinear e�ect, we design a Constant Cosine Wave Generator
to transmit a cosine wave with a constant ultrasonic frequency of
f0.

During human talking protected by Patronus, the actual human
conversation plus two ultrasonic signals will arrive essentially si-
multaneously at recorders (both authorized and unauthorized) and
human ears. Human ears will not detect the ultrasonic signals and
thus receive the human conversation with no additional noise. As
discussed in Section 3, the two ultrasonic signals will generate a
shadow audible signal that will be included in any recording made
by a COTSmicrophone due to nonlinear e�ects. This applies to both
authorized and unauthorized devices. Authorized devices, which
receive a secret key from the Scrambling Transmitter, can generate
the scramble waveform. They can then feed the scramble wave-
form along with the scrambled recording into an adaptive �lter
to extract clear speech from the scrambled speech. The details of
descrambling will be discussed in Section 4.5.

We must overcome three challenges in order to design Patronus.
First, we must design a system whose working area is as large as
possible. This is di�cult because a sound wave of high frequency
typically travels along a straight line meaning a straightforward
implementation of ultrasonic generators will only cover a small
area de�ned by a limited range of angles. Second, there is a trade-o�
between a shorter and a longer period of scramble frequencies. As
the period increases, the system is more vulnerable to unautho-
rized recordings using STFT attacks. As the period decreases, the
di�culty of descrambling increases. Our goal is to maximize the

information recovered by authorized devices over unauthorized
ones without exposing the scramble pattern to STFT. These details
are discussed in Section 4.3.4. Third, when frequency changes fre-
quently, a severe ringing e�ect (Section 4.3) occurs in the scrambled
recording, which a�ects even the recordings made by authorized de-
vices after descrambling. We use chirps to connect each frequency
component of the scramble to eliminate the sudden change of the
input to ultrasonic transducers, hence minimizing the ringing e�ect
and enhancing the quality of the recovered speech by authorized
devices.

4.2 Attack Model
Based on common acoustic processing technologies and known
properties of nonlinearity e�ects, we consider the following types
of attacks:

4.2.1 Short-Time Fourier Transform (STFT). One natural way for
an unauthorized device to try to extract a useful recording from
its scrambled recording is to analyze the scrambled recording with
STFT and �lter out suspicious frequencies. We address this attack
model by changing the scramble frequency according to a �nely-
tuned period model, making it impossible for the attacker to obtain
each exact scramble frequency along with its start and end time.
Detailed analysis is provided in Section 4.3.4. Even with the cor-
rect scramble frequencies available, bandpass �lters will not work
because the scramble frequencies are selected from the human
voice band. The frequencies from chirps and those from human
speaking are mixed together. To prove Patronus can defeat this
attack model, we simulate the attack scenario when (1) the attacker
is aware that our scramble pattern is varying continuous waves
smoothed by chirps (2) the attacker calculates approximate scram-
ble frequencies with STFT (3) the attacker applies NLMS adaptive
�lter (Section 4.5.4) to remove the scramble with the approximate
scramble frequencies they obtained from STFT. Our simulated at-
tack experiments, provided in Section 6.8, show that this attack will
fail because the approximate scramble frequencies are not accurate
enough.

4.2.2 Extra Ultrasonic Transmi�er A�ack. After DolphinAttack[9]
proposes to inject malicious commands into ultrasound, AIC [16]
adds three more ultrasonic transmitters to cancel the malicious
commands and protect Voice Control Systems (VCS). AIC assumes
the legitimate as well as malicious commands are within the lower
sub-band of the microphone sensible frequency band. Their added
ultrasonic transmitters project only the malicious commands onto
the higher sub-band, which can be used to �lter the malicious
commands in the low sub-band. With a fast changing of scramble
frequencies, we can cover the whole frequency band, and make
sure no clean band is left for attackers.

4.2.3 Wi-Fi/Bluetooth Snifing. Attackers can sni�er the Wi-Fi or
Bluetooth channel to get the scramble pattern transmitted from the
Scramble Transmitter to the authorized device. However, there are
many cryptographic approaches to prevent attackers from sni�ng
channels. For example, we can encrypt the scramble pattern by AES-
CTR using a pre-shared key and then directly send it to authorized
devices.
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Figure 3: Illustration of how linear chirps mitigate the ring-
ing e�ect.

4.2.4 Physical A�acking. There are also some physical attack mod-
els. First, attackers can place an obstacle before the Scramble Trans-
mitter. However, attackers cannot do it secretly and nobody would
like to do so. Second, attackers may just wrap a cover on their
microphones. However, the cover itself may defeat the attackers
objective of making a good recording. Although Patronus cannot
perfectly handle such attack models, it enhances the di�culty of
making an unauthorized recording. Finally, attackers may conduct
experiments to discover where Patronus fails. This can be �xed by
enlarging the working area through some methods that we will
discuss later.

4.3 Ultrasonic Scramble Modulation
Two ultrasonic signals will be superimposed at the recorders to
create the desired low-frequency component. In the design of the
scramble using ultrasonic signals, we mainly consider the following
issues:

4.3.1 Range of Frequency. The �rst issue is how to make it hard
to cancel out the scramble without the key. Basically, the range of
human speech frequency is from 85Hz to 255Hz [25, 26]. If the
scramble consists of multiple random frequencies from this range,
it is hard for attackers to cancel the scramble using linear �lters.
The application of a linear �lter, e.g., highpass �lter, will not only
cancel the scramble, it will also change the original human speech.
To ensure the scramble covers all human speech frequencies in
practice, we modulate the scramble with a wider frequency band
than [85, 255] Hz.

4.3.2 Random Frequencies. If we always use speci�c frequencies
to generate the scramble, attackers could analyze the frequency
spectrum of their recordings to infer the scramble frequencies;
with those, they could then recover the original audio signals. To
address this issue, we choose scramble frequencies randomly. We
also periodically change the scramble frequencies over time. The
sequence of scramble frequencies can be thought of as a one-time
pad key. Without the sequence, it would be di�cult for attackers
to remove the scramble.

4.3.3 Ringing E�ect. Frequent changing of the scramble frequen-
cies produces a ringing e�ect [7] that makes it challenging for
authorized devices to produce a high-quality descrambled record-
ing. Speci�cally, the ringing e�ects incur heavy-tailed impulse re-
sponses that will remain in descrambled recordings as shown in
Figure 3 (a) and (b). Since the ringing e�ect occurs when the input
changes suddenly, we use a chirp signal to connect two adjacent
segments with di�erent frequencies in the scramble to smooth such
a sudden change. Speci�cally, when the scramble changes from
frequency A to frequency B, we add a transition signal that starts
at frequency A and moves linearly to end with frequency B.

The impulse incurred by ringing e�ects can have a very high
amplitude or power. It will suppress other signals due to the mi-
crophone Passive Gain Suppression [7]. Figure 3 con�rms that the
ringing e�ect is mitigated by chirps. Figure 3 (a) shows a scrambled
recording with no chirp, the resulting descrambled recording in
Figure 3 (b) has many areas where most of the signal is suppressed.
In contrast, Figure 3 (c) exhibits a scrambled recording with chirp
signals, the resulting descrambled recording in Figure 3 (d) does
not have the peak signals corresponding to the ringing e�ect and
the rest of the signal is not suppressed.

4.3.4 Duration of each frequency. The next challenge is choosing
the proper duration for each frequency in the sequence of scramble
frequencies. Intuitively, if we give each frequency a long duration,
unauthorized devices could easily split the record into multiple
segments where each segment is only protected by a constant
frequency scramble. They could then apply simple techniques such
as using a linear bandpass �lter to the scrambled recording to
extract a clear speech recording.

More generally, there are two competing issues in choosing the
duration of each scramble frequency, namely, defending against
STFT attacks that are discussed in Section 4.2.1, and ensuring that
authorized devices can obtain high-quality descrambled recordings.
We �rst consider defending against STFT attacks. An STFT attack
can successfully remove the scramble waveform if it can both ac-
curately infer the frequencies and time periods for each scramble
frequency in the sequence of frequencies. When the window length
is n, the frequency resolution would be �f = fs

n =
fs

fs⇥t =
1
t where

fs is the sampling rate and t is the duration of the window. Tak-
ing 0.1s as an example, the o�set of STFT can reach 10Hz. If the
attacker tries to improve the frequency resolution by lengthening
the window, the accuracy of the estimated time periods for the
given scramble frequency will diminish. If the scramble frequency
duration is long, scramble frequency will exhibit fewer changes
within any given window, thus STFT attacks can use longer win-
dows to accurately estimate the frequency with exact estimates of
the frequency time period. Therefore, to thwart STFT attacks, we
should make the frequency duration as short as possible. However,
a too-short duration may misshape the scrambled recording due
to imperfect hardware. A typical microphone and speaker use a di-
aphragm to sense and generate the vibration; this diaphragmmoves
continuously and can not change its position instantaneously. Cir-
cuit latency also makes it hard for the system to respond to frequent
and instant changes. As a result, the scrambled waveform would be
slightly distorted. Thismeans the NLMS adaptive �lter at authorized
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devices may not correctly descramble the scrambled waveform be-
cause it does not expect the distortion caused by frequent frequency
changes. Therefore, the frequency duration cannot be too short.
In summary, to balance these competing concerns, we must �nd
a frequency duration that maximizes the information recovered
by authorized devices compared to the information recovered by
unauthorized devices. To identify a good frequency duration, we
measure the descrambling performance with di�erent frequency
durations in Section 6.8.

4.3.5 Key Construction. We have two choices to construct the key
for granting the privilege of recording the audio to authorized de-
vices. One is directly using the scramble waveform generated by
the Scramble Generator as the key. After getting the scramble wave-
form, authorized devices remove the scramble from the recorded
audio. But there are some issues we need to consider. First, the
sampling rate of authorized devices may vary from one to another.
It means that in terms of the digital signal, devices having di�erent
sampling rates will get di�erent presentations of the same scramble
waveform. To grant the privilege to devices, the Scramble Transmit-
ter should generate di�erent digital scramble waveforms according
to di�erent sampling rates of authorized devices. This results in
high computational overheads. Second, in addition to di�erent sam-
pling rates from di�erent authorized devices, the sampling rates
of the Scramble Generator and an authorized device may be also
di�erent. As a result, the scramble that the speaker emitted might
have a di�erent presentation of the recorded waveform.

In Patronus, we choose another way to construct the key. We
select the frequency sequence used to generate the scramble as the
key. After receiving the frequency sequence, an authorized device
can reconstruct the scramble waveform with their sampling rates,
which we discuss in more detail later. After that, an authorized
device can use the reconstructed scramble waveform to remove the
scramble from the recording and get the clear speech.

With the discussion above, we formally describe the scramble
generation. We set one speaker to transmit an ultrasonic contin-
uous wave S1(t) = cos(2� f0t), while the other speaker transmits
continuous waves linked by chirps S2(t) = cos(2� f (t)t), where

f (t) =
(
fi , (2i � 2)�t  t < (2i � 1)�t ,
fi +

fi+1�fi
�t t , (2i � 1)�t  t < 2i�t ,

(1)

and fi (i = 1, . . . ,n) are randomly generated constant frequencies.
�t is the duration of a single sine wave or a chirp. The induced
low-frequency noise will be

R(t) = cos(2� (f (t) � f0)t). (2)

To ensure R(t) covers human voice, fi (i = 1, . . . ,n) are sampled
from [flow + f0, fhi�h + f0] where [flow , fhi�h ] covers the human
voice band.

4.4 Enlarge Scramble Working Area
The scramble signal is generated by two ultrasonic signals, which
incurs another issue as the ultrasonic wave typically propagates
in a straight line. In other words, if you want to prevent a certain
device from recording, the ultrasonic transducers should be pointed
directly towards that device. This results in a limited coverage area
for ultrasonic anti-recording solutions.

Inspired by lamps that often use a bow-shaped cover to re�ect
the light beam in many directions, we build a re�ection layer that
re�ects the ultrasonic wave in many directions. As Figure 4 shows,
we put ultrasonic transducers near the center of the re�ection layer
and place the devices (authorized and unauthorized) in the working
area. When the ultrasonic wave hits the re�ection layer, it gets
re�ected in many directions leading to a much larger cover area.

4.5 Grant Recording Privilege
The goal of Patronus is not only to block unauthorized devices
from recording audio, but also to provide authorized devices with a
mechanism to recover speech. Patronus achieves this by creating a
way for authorized devices to remove the scramble from the scram-
bled recording. Speci�cally, Patronus grants the clear recording
privilege to authorized devices using the following steps.

4.5.1 Key Transmission. The Descramble Receiver needs the wave-
form of the scramble generated by the Scramble Generator before
it can remove the scramble. Intuitively, if it had the pure scramble
waveform, it could remove the scramble from the recorded audio
by subtracting the scramble waveform from the recorded audio
waveform. The scramble waveform here acts as the key for deci-
phering the recorded audio. We send the key through non-acoustic
channels such as Wi-Fi or Bluetooth with cryptographic protection
to prevent eavesdroppers from getting the key. Additionally, be-
cause of the randomness of scramble frequencies, they cannot get
a usable scramble waveform by listening to the acoustic channel.
Instead, they can get either the combination of interfered speech
with scramble, or get the scramble without speech but independent
of the successive scramble waveform.

4.5.2 Scramble Reconstruction. As discussed in Section 4.3, the
Scramble Transmitter sends the random frequency sequence in-
stead of the scramble waveform to authorized devices as the key.
Patronus needs to use these frequencies to reconstruct the scram-
ble waveform before removing the scramble. An authorized device
uses Equation (2) and its recording sampling rate to generate the
scramble waveform.

4.5.3 Synchronization. We need to synchronize the reconstructed
scramble with the recorded scramble before removing it from
recordings. Speci�cally, we choose a segment from the reconstructed
scramble as the template, e.g., the beginning segment. Then we use
cross-correlation to �nd the segment that is the most similar to
the template. We then synchronize the recorded scramble and the
reconstructed scramble by aligning the two segments.

4.5.4 Adaptive Filtering. Now we have the waveform of the scram-
ble. The next task is to remove the scramble from the recorded audio
with the known waveform of the scramble. Practically, we cannot
directly subtract the scramble from the recorded audio because
when the sound propagates through the air, it will be distorted due
to re�ection and attenuation. We use adaptive �lter to remove the
waveform-known scramble.

Adaptive �lter is widely used in Active Noise Cancellation (ANC)
headsets. Technically, there is a reference microphone outside the
headset. The reference microphone captures the noise, and the dig-
ital signal processor (DSP) generates the anti-noise wave according
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to the captured noise. When the noise wave and the anti-noise
wave arrive at the ear, they eliminate each other. In Patronus, we
denote the speech as x1. It propagates through the acoustic channel
h1, arrives at the authorized device and becomes h1 ⇤ x1, where
the operator ⇤ denotes the convolution operation. Additionally,
we denote the scramble waveform that is generated by non-linear
e�ects and recorded by the authorized device as x2. It propagates
through another channel h2, arrives at the authorized device and
becomes h2 ⇤ x2. Therefore, the audio recorded by the authorized
device is

� = h1 ⇤ x1 + h2 ⇤ x2. (3)

Similar to ANC headsets, here we see the scramble x2 as the noise
in ANC headsets. Di�erent from ANC headsets, the noise here is
generated from the key as we discussed in Section 4.5.2. Therefore,
we can use the Normalized Least-Mean-Square (NLMS) Adaptive
Filter [14] to remove the scramble. Formally, we are trying to �nd
a channel vector h02 to solve the optimization problem

minE[(� � h02 ⇤ x2)2]. (4)

When the expectation in Equation (4) is minimized, h2 ⇡ h02. There-
fore, h1 ⇤ x1 ⇡ � � h02 ⇤ x2, and it can be regarded as the speech
without the scramble. Stochastic gradient descent is usually adopted
to solve the optimization problem de�ned by Equation (4), but it
is hard to derive the gradient of the expectation. Researchers thus
use (� � h02 ⇤ x2)2 instead of the expectation to solve the problem.
In this way, the noise gets canceled [27].

Following this design, we can develop a mechanism that prevents
unauthorized recording while supporting authorized recording. The
mechanism also prevents attackers from descrambling without au-
thorization. Figure 7 gives an example. A piece of VOA news audio
is used as the original record, the attack result has severe scramble
e�ects just like the unauthorized record, but the authorized record
removes almost all scrambles.

5 IMPLEMENTATION
This section discusses the details of the implementation of Patronus,
which contains two parts, the Scramble Transmitter and the De-
scramble Receiver for authorized devices. We use an ordinary smart-
phone with its built-in audio recorder as the Unauthorized Device
or Authorized Device.

5.1 Scramble Transmitter
5.1.1 Hardware Implementation. As Figure 5 shows, we use eight
TCT40-16R/T 16mm ultrasonic transducers. Half of them play
the frequency-shifted scramble and they are connected in paral-
lel. The other half play the �xed-frequency cosine wave and are
connected in parallel as well. We utilize an AOSHIKE DC12V-24V
2.1 Channel TPA3116 Subwoofer Ampli�er Board to enhance the
power of output ultrasonic signals. The two waveforms are played
through a stereo channel. The frequency-shifted scramble uses the
left channel, and the constant-frequency cosine wave uses the right
channel.

As we have discussed in Section 4.4, we use a re�ection layer to
enlarge the working area. In this prototype, we use an iron wok
as the re�ection layer. The opening diameter of the iron wok is 30
cm, and the depth is 10 cm. As shown in Figure 6, the ultrasonic
transducers are placed towards the center of the iron wok.

5.1.2 Format of Key. As we have mentioned in Section 4, Patronus
uses the frequency sequence as the key. This key must include
the duration of each frequency in addition to the frequency itself
in order for the Descramble Receiver to generate the scramble
waveform. Thus, our key �le includes the frequency sequence plus
the sample rate of the Scramble Transmitter and the number of
samples of each frequency.

5.2 Descramble Receiver for Authorized
Devices

We use an ordinary smartphone as an authorized device. The autho-
rized device receives the key from the Scramble Transmitter. After
the audio is recorded, the smartphone reconstructs the scramble
waveform with the given key and leverages NLMS Adaptive �lter
to cancel the scramble. Formally, it takes the following steps:

5.2.1 Reconstruct Scramble Waveform. As we mentioned, in addi-
tion to the frequency sequence, the received key also contains the
sampling rate of the Scramble Transmitter, which is denoted by fst ,
as well as the number of samples of each frequency nt . With the
known sampling rate of the authorized device fsr , the number of
its recovered samples for each scramble frequency component can
be calculated through the equation

nr =
fsrnt
fst
, (5)
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(d) Descrambled by STFT attack

Figure 7: Illustration of original waveform, authorized waveform, unauthorized waveform, and descrambled waveform by
STFT attack.

After getting nr , the authorized device uses the same process
as the Scramble Transmitter to generate the scramble, i.e., generat-
ing the discrete cosine signal with the frequency fi and fi+1, and
connecting them by a chirp signal with start frequency fi and end
frequency fi+1, where fi and fi+1 are from the frequency sequence
in the key.

5.2.2 Normalized Least-Mean-Square (NLMS) Adaptive Filter. After
reconstructing the scramble waveform, we can use the Normalized
Least-Mean-Square Adaptive Filter to cancel the scramble from the
scrambled record. Speci�cally, we put the scrambled record recs and
the scramble waveform s into the NLMS Adaptive Filter to get the
descrambled waveform e by removing s from recs . According to the
discussion in Section 3, the scramble wave is not only generated by
frequencies in the given frequency sequence but also generated by
high-order frequencies that are multiples of the target frequencies.
Therefore, after getting e from the NLMS Adaptive �lter, we still
need to iteratively remove the multiples of the frequency sequence
scramble by NLMS Adaptive �lter. It means that we iteratively
put e and the scramble waveform generated by k-times multiple
of the frequency sequence into NLMS Adaptive Filter, where k =
2, 3, 4, 5, 6 in our prototype.

In summary, the procedure of authorized devices for removing
the scramble from the record is shown in Algorithm 1.

Algorithm 1 Remove Scramble from the record

Input: recs , fsr , fst , nt ,
the frequency sequence f [1..n]

Output: Speech Record without Scramble e
1: nr  fsrnt /fst
2: e  recs
3: for k = 1 to 6 do
4: s  ScrambleGenerator(k ⇥ f [1..n], nr ).
5: e  NLMS-Adaptive-Filter(e , s)
6: return e

The NLMS-Adaptive-Filter can be found in many open-source
libraries, e.g.,MATLAB, Python, etc.. Due to the selective frequency
response of di�erent smart devices, each model has its own param-
eter setting. In the implementation, we choose 500 as the number
of taps and 0.005 as the step size for an iPhone, 100 as the number
of taps and 0.003 as the step size for a Pixel, and 300 as the number
of taps and 0.005 as the step size for a Galaxy S9.

5.3 Simulated STFT Attacker
We also simulate an STFT attacker to verify whether or not Pa-
tronus can prevent such an attack. Speci�cally, as discussed in
Section 4.2.1, we apply STFT to the scrambled recording using the
MATLAB function stft to infer its frequency sequence. We then
feed the frequency sequence to an NLMS adaptive �lter to get
the descrambled recording. Experiment results are shown in Sec-
tion 6.8. Here, we illustrate an example, which contains the original
waveform, authorized waveform, unauthorized waveform and the
waveform descrambled by STFT, in Figure 7. As illustrated by the
�gure, we observe that the authorized waveform is similar to the
original waveform, the unauthorized waveform is di�erent from
the original one, and the unauthorized waveform is similar to the
waveform descrambled by STFT attack. Therefore, our prototype
proves that Patronus can block the unauthorized recording while
allowing authorized recording, and it can prevent STFT attacks.

6 EVALUATION
6.1 Overview
To evaluate the performance of Patronus, we select six news speech
waveforms from Voice of America (VOA) and note these waveforms
as A - F. The news speeches are read by a male, a female, or both
alternatively, sometimes with background music.

A normal speaker (shown in Figure 6) is set to play these news
waveforms, and we also read the news ourselves. While the news
waveforms are played under di�erent conditions, we start Patronus
to interfere with the unauthorized recording device. Meanwhile,
an authorized device is recording too. Later we apply scramble
cancellation to recordings from the authorized device. After get-
ting the scrambled recordings and scramble-canceled recordings,
the following metrics are adopted to measure the performance of
Patronus.

6.1.1 Perceptual Evaluation of Speech�ality (PESQ). PESQ is a
common-used metric of speech quality [15]. It is widely adopted
by phone manufacturers, network equipment vendors, and telecom
operators. Technically, the inputs include a clear speech signal as
the reference and a signal that needs to be measured. The output
is a Mean Opinion Score (MOS) [28] ranging from �0.5 to 4.5. A
high PESQ score means that the corresponding speech has a high
hearing quality and vice versa. Typically, PESQ values ranging
from 1.00 to 1.99 means “No meaning understood with any feasible
e�ort” while those ranging from 3.80 to 4.50 meaning “Complete
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Figure 8: (a) PESQ of recordings captured by unauthorized and authorized devices, and PESQ of recordings without scrambling
by turning o� Patronus as the baseline. (b) Upper half: The CDF of SRVA Error of scrambled recordings from the unauthorized
device. Lower half: The ratio of SRVA between scrambled recordings and original waveforms. (c) Upper half: The CDF of SRVA
Error of descrambled recordings from the authorized device. Lower half: The ratio of SRVA between descrambled recordings
and original waveforms.

relaxation possible; no e�ort required” [29]. However, we cannot
regard the audio recording as strict as lossless communication. To
�t PESQ to characterize the performance of Patronus, we measure
the PESQ of recordings without scrambling by turning o� Patronus,
and use that result as the baseline. As shown in Figure 8(a), such
recordings have PESQ between 2.2 and 2.7. We regard them as
the upper bound of both unauthorized and authorized recordings.
In the following experiments, we use the PESQ implementation
written in MATLAB [30] to compute the PESQ score.

6.1.2 Speech Recognition Vocabulary Accuracy (SRVA). We also use
a Speech Recognition service to measure the e�ectiveness of scram-
bling and descrambling. Speci�cally, we apply Google’s Speech To
Text (STT) service to transform the acoustic signals to text. We
�rst use the STT service to recognize the original speech with-
out interference and treat the recognized word sequence wc as
the ground truth. Then we use the STT service to recognize the
scrambled speech and descrambled speech, and usews andwd to

denote their results, respectively. We name

Õ
i2ws

isT rue(i 2wc )

|wc | (orÕ
i2wd

isT rue(i 2wc )

|wc | ) as the Speech Vocabulary Recognition Accuracy
(SRVA) and use it to quantify the e�ectiveness of scrambling and
descrambling. Note that isTrue(i 2 wc ) returns 1 when i is a word
fromwc , and 0 when i is not a word fromwc . We de�ne SRVA Error
as 1� SRVA which indicates the error rates of recognition with the
STT service.

Using the above metrics, we try to answer the following ques-
tions:

• Can Patronus e�ectively scramble the unauthorized speech
recordings?

• Can Patronus permit authorized devices to record the speech?
• Can Patronus work on di�erent mobile devices?
• What is the impact of the distance between Patronus and a
recorder?

• What is the impact of the re�ection layer?
• What is the impact of the frequency switching time?

• Is it possible to perform real-time descrambling?

6.2 E�ectiveness of Scrambling and
Descrambling

We split the 6 news speech waveforms into 55 segments (1650
seconds in total), each 30 seconds long. Both the authorized and
unauthorized device are Apple iPhone X in this experiment, so do
the following experiments except that of Section 6.5. As shown in
Figure 8(a), with Patronus’s scrambling, the hearing qualities of
most segments are extremely low. Speci�cally, 44 out of 55 (80.0%)
segments have PESQ scores lower than 1.5. For SRVA, overall, only
551 out of 2796 (19.7%) words are recognized correctly. More de-
tailed results are shown in Figure 8(b). The upper half shows the
CDF of the SRVA Error. We can know that 50% of the recordings
have SRVA Error lower than 0.84, and 80% of the recordings have
SRVA Error lower than 0.98. The lower half shows the ratio of SRVA
between scrambled recordings and original waveforms. The results
show that all of the news waveforms having a recognition rate
lower than 0.3. Here we want to mention that if a word appears
multiple times in a speech, SRVA would result in a high value or a
low value compared to the actual word recognition rate. However,
duplicated words have little impact because the duplicate rates of
every segment, i.e., the ratio between the count of a speci�c word
and the total count of words in the segment, are lower than 5%.

To evaluate the e�ectiveness of descrambling, an authorized
device records the speech under the scrambling from Patronus. The
authorized device then cancels the scramble using the received
key. As shown in Figure 8(a), after descrambling, only 9 out of 55
(16.3%) segments having PESQ scores lower than 1.5. On average,
descrambled recordings have 1.6x higher PESQ scores than their
corresponding scrambled recordings. As for SRVA, we show the
CDF of the SRVA Error in the upper half of Figure 8(c). These results
show that 50% of the descrambled recordings have SRVA Error
lower than 0.43, which is 49% lower than scrambled recordings.
Moreover, 80% of the descrambled recordings have SRVA Error
lower than 0.64, which is 35% lower than scrambled recordings.
As shown in the lower half of Figure 8(c), ratios of SRVA between
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Figure 9: (a) Compare SRVA between before and after descrambling for the human voice. (b) Compare SRVA between before
and after descrambling for human recognition. (c) Compare average PESQ and SRVA among di�erent models.

descrambled recordings and original waveforms are higher than 0.4
and lower than 0.8. They are at least 2x better than the scrambled
recordings. The quality of the descrambled recordings is not as
good as the original ones because there are residual components
of the scramble after applying the NLMS adaptive �lter. Moreover,
background music and the volume of the original waveform also
a�ects the quality of the descrambled recordings. For example,
news C has a lower ratio after being descrambled by the authorized
device compared to the other news clips because it has background
music that could a�ect the performance of authorized devices. It
also a�ects the SRVA of the record without scrambling, i.e., only 223
words are recognized from 295 in total. The reader of news E reads
the news in a lower volume compared to others, so it has a lower
ratio after being descrambled by the authorized device compared
to the other news clips.

6.3 E�ectiveness of Human Voice Scrambling
and Descrambling

To verify whether Patronus works for real human speaking other
than a sound player, we read the news and calculate SRVA1. As
shown in Figure 9(a), Patronus can e�ectively scramble and de-
scramble the human voice. Speci�cally, for the scrambled record-
ings, the median of SRVA Error is 0.74, and 80% of scrambled
recordings have SRVA Error lower than 0.83. For the descram-
bled recordings, the median of SRVA Error is 0.27, and 80% of the
descrambled recordings have SRVA Error lower than 0.4. The de-
scrambling e�ectiveness of the human speaker is better than that
of recorded sounds because recorded sounds from VOA sometimes
play background music.

6.4 E�ectiveness of Human Recognition to
Scrambled Recordings and Descrambled
Recordings

Because there might exist di�erences between machine learning-
based speech recognition and human speech recognition, we invite
11 volunteers to write down words after listening to the 55 scram-
bled recordings and 55 descrambled ones1. The results are shown in

1This experiment is approved by IRB committee.

Figure 9(b). People react di�erently to noise. Some people are very
sensitive and the scrambled noise make them very uncomfortable.
Note, the noise is generated by ultrasound speakers and only cap-
tured by the nonlinear e�ects of microphones, so it will not disturb
the people in the original conversation. It will only be heard after
getting recorded by unauthorized devices. Further, authorized de-
vices will be able to �lter out such noises eliminating the discomfort
for those listeners. The recovered information from humans listen-
ing to descrambled recordings is still better than that of humans
listening to scrambled ones. 50% of the scrambled recordings have
SRVA Error lower than 0.63, and 80% of the scrambled recordings
have SRVA Error lower than 0.86. As a comparison, 50% of the
descrambled recordings have SRVA Error lower than 0.34, and 80%
of the descrambled recordings have SRVA Error lower than 0.63.

6.5 E�ectiveness on Di�erent Mobile Models
To verify whether Patronus works on di�erent mobile models, we
test it on three devices, an Apple iPhone X, a Samsung Galaxy
S9, and a Google Pixel. We play all 55 segments using the normal
speaker, and calculate average PESQs and SRVAs.

As shown in Figure 9(c), less than 30% of words can be rec-
ognized by the STT service for all the unauthorized devices, and
around 65% of words can be recognized for all the authorized
devices. When the mobile devices are unauthorized, the average
PESQ of iPhone X is 1.06, and the average PESQ of the other two
models are even lower, roughly 0.5. When the mobile devices are
authorized, they all achieve an average PESQ around 1.85. This
demonstrates that Patronus works well for all devices; namely, it
prevents all models from making good unauthorized recordings
and allows all models to make acceptable authorized recordings.

6.6 Impact of the Distance
We also characterize the impact of the distance between Patronus
and the recording devices (both authorized and unauthorized). We
put the Scramble Transmitter at the origin. A randomly-picked
speech segment (which has 43 words) is played by a normal speaker,
which simulates the talker. The authorized device and an unautho-
rized device are recording at the same time. Their distance to the
Scramble Transmitter varies from 25 cm to 70 cm. Results of SRVA
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Figure 10: (a) Compare PESQ and SRVA at di�erent distances. (b) Illustration of the re�ection layer experiment. (c) Compare
PESQ and SRVA with di�erent frequency switching times.

RT (s)

DT (ms) MSO
1 2 3 4 5 6

1 51 96 159 209 265 328
2 73 145 218 291 373 454
5 161 322 487 634 798 954
10 290 582 851 1108 1389 1653
20 548 1094 1653 2165 2695 3298
30 822 1617 2348 3088 3830 4563

Table 1: Descramble time (DT) of di�erent record times (RT)
with di�erent max scramble orders (MSO, the upper bound
of k in Algorithm 1).

and PESQ between two devices are shown in Figure 10(a). Overall,
as the distance increases, the ultrasound would attenuate more.
Therefore, the strength of the scramble decreases as the distance
from the scramble transmitter increases. As a result, when the de-
vice is far enough away, both the authorized and unauthorized
device can both record a clear speech. On the other hand, when
devices are close enough, unauthorized devices produce recordings
that are severely scrambled whereas authorized devices can recover
much clearer speech using the secret key. The working area can
be extended by using high power ultrasonic speakers, which we
will discuss later. Here we want to mention that although there is a
bump in Figure 10(a) at 55 cm with the SRVA, PESQs of 55cm and
60cm are close. This means that humans cannot see much di�er-
ence between these two recordings, something we con�rmed in
person by listening to these recordings with this objective in mind.
Thus, the SRVA bump at 55cm might be due to an error-correction
mechanism of the Google STT engine; of course, since this is propri-
etary technology, we do not know how or why this error-correction
would produce such a performance bump for this recording.

6.7 Impact of the Re�ection Layer
As we mentioned before, the ultrasound wave often propagates
along a straight line. To enlarge the range of Patronus scrambling,
we design a re�ection layer. In this experiment, we apply the com-
mon speaker to play the chosen speech segment (43 words). As
shown in Figure 10(b), we point the ultrasonic transducers towards

the re�ection layer and change angles of both authorized and unau-
thorized devices to the ultrasonic transducers and measure Pa-
tronus’ performance; in other experiments, the devices are always
put at the 90� angle. We also measure the performance without us-
ing the re�ection layer. We turn the ultrasonic transducers around
so they face in the same direction as the normal speaker when we
remove the re�ection layer. The results when using the re�ection
layer are shown in Figure 11(a) and 11(b), and the results without
using the re�ection layer are shown in Figure 11(c) and 11(d). From
the results, we see that with the re�ection layer, Patronus can suc-
cessfully scramble the unauthorized device when the angle is more
than 15

�, which is sign�cantly larger than the angle of more than
45
� needed by Patronus without the re�ection layer. Therefore, the

re�ection layer does signi�cantly enlarge the scramble range of
Patronus.

6.8 Impact of the Frequency Duration
We also measure the impact of the frequency duration. As we dis-
cussed in Section 4, we would like to make the duration of each
frequency as short as possible. However, the shorter the frequency
duration is, the harder it is for authorized devices to descramble.
To verify this feature, we put an authorized and an unauthorized
device at 40 cm to Patronus and play the chosen segment (43 words)
using the normal speaker. Both devices record the speech under
Patronus using 5 di�erent frequency durations: 0.1 s, 0.2 s, 0.3 s,
0.4 s and 0.5 s. We calculate PESQs and SRVAs for each duration.
Moreover, we implement the attack model from Section 4.2, which
�rst calculates approximate scramble frequencies using STFT and
then attempts to cancel the scramble using an NLMS adaptive �lter.
We calculate PESQs and SRVAs for each duration and all devices
including the attack model.

As shown in Figure 10(c), for all durations, SRVAs of the unau-
thorized device are lower than 0.1, and PESQs are lower than 0.5.
The authorized device has higher SRVAs and PESQs than the unau-
thorized device. Speci�cally, when the duration comes to 0.3 s, the
SRVA reaches roughly 0.8 and PESQ exceeds 2.0. This veri�es our
claim that authorized devices can successfully descramble when
the frequency duration is long enough.
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Figure 11: (a) and (b): Compare PESQ and SRVA with the using of the re�ection layer. (c) and (d): Compare PESQ and SRVA
without the using of the re�ection layer.

A shorter duration also makes it harder for attackers to crack
the scrambled record, e.g., SRVAs for the attacker also increase
as the duration increases. Although both SRVAs and PESQs are
higher than those of the unauthorized device, they are still too
low to extract useful information. The reason why the NLMS adap-
tive �lter fails is that the attacker cannot identify the scramble
frequencies with enough accuracy. NLMS adaptive �lter solves the
optimization problem de�ned by Equation (4), which estimates the
weight vector h02. Since convolution does not change the frequency
of the signal, the attacker cannot make up for any o�set existing
between the correct frequency and the result from STFT. According
to the frequency resolution problem of STFT as discussed in Sec-
tion 4.3.4, the simulated attacker in our experiment gets an average
frequency o�set around 3 Hz, which makes it hard to descramble
the recording.

6.9 Descramble Time
Sometimeswhenwe grant recording permission to a speci�c speaker,
the speaker would like to perform real-time descrambling. Patronus
can achieve this working with real-time smart devices such as Ama-
zon Alexa. To prove this, we measure the descramble time for
records with di�erent durations on a laptop with an Intel Core i7-
4870HQ 2.5 GHz CPU. Since di�erent high-order scramble waves
(second-order component, third-order component, ...) may exist in
a record simultaneously, we measure descramble time as a function
of di�erent max scramble orders, i.e., the upper bound of k in Algo-
rithm 1. As shown in Table 1, Patronus can descramble the record
quickly. Speci�cally, when the record time is 1 s, Patronus can �nish
descrambling in 328 ms, even when the max scramble order is 6.
This means that Patronus supports real-time descrambling.

7 LIMITATIONS AND FUTUREWORKS
Range: In our implementation, we use cheap and low power ul-
trasonic transducers to build the Scramble Transmitter. The result
is a short working distance, i.e., less than 70 cm. To enlarge the
working area to a wider range of angles, we designed a re�ection
layer and veri�ed that it could enlarge the working area by using an
iron wok in our prototype. We can also use a high power ultrasonic
speaker to protect a larger area. Some commercial o�-the-shelf
devices can emit ultrasound which could be sensed in a larger area.
For example, UPS+ [5] uses an ultrasonic speaker with a working

area of 50m ⇥ 50m. However, it is expensive. We can reduce the
cost by deploying one expensive speaker and multiple transducers
like UPS+[5]. Here we provide users with three options to deploy
Patronus according to their requirements such as working area and
budget. The �rst option is to use cheap transducers and a re�ection
layer to protect a small area. The second is combining an expensive
speaker and multiple transducers to protect a larger area. The third
is using multiple expensive speakers to protect the largest area.
Volume: In our implementation, we assume the talker uses a nor-
mal volume, i.e., not too loud or too quiet. However, the performance
of Patronus does vary as a function of the speaker volume. For ex-
ample, if the talker speaks too loudly, the scramble cannot mess
up the recording; in the opposite extreme, a quiet talker cannot
be recovered using descrambling. To adapt to di�erent volumes,
we can add a microphone to measure the talker’s volume. With
multiple deployed ultrasonic speakers or transducers, we can �rst
detect the position of recording devices and then adjust the power
of ultrasound emitted from the nearest speakers according to the
talker’s volume. There are two challenges that need to be solved.
First, the microphone we use to measure the talker’s volume can
also be scrambled. Second, we need to localize recording devices
before emitting scrambles. We leave these challenges as future
work.

8 CONCLUSION
Acoustic privacy protection has always been an important topic. In
this paper, we study the nonlinear e�ects on commercial o�-the-
shelf microphones. Based on our study, we propose Patronus, which
leverages the nonlinear e�ects to disrupt unauthorized devices from
recording the speech while simultaneously allowing authorized
devices to record clear speech audio. We implement and evaluate
Patronus in a wide variety of representative scenarios. Results show
that Patronus e�ectively blocks unauthorized devices from making
secret recordings while allowing authorized devices to successfully
make clear recordings.
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